下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年湖北省黃岡市某學校數(shù)學高職單招模擬考試(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.下列表示同一函數(shù)的是()A.f(x)=x2/x+1與f(x)=x—1
B.f(x)=x0(x≠0)與f(x)=1
C.
D.f(x)=2x+l與f(t)=2t+1
2.下列函數(shù)為偶函數(shù)的是A.B.y=7x
C.y=2x+1
3.在△ABC中,角A,B,C所對邊為a,b,c,“A>B”是a>b的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
4.在空間中垂直于同一條直線的兩條直線一定是()A.平行B.相交C.異面D.前三種情況都有可能
5.直線:y+4=0與圓(x-2)2+(y+l)2=9的位置關系是()
A.相切B.相交且直線不經過圓心C.相離D.相交且直線經過圓心
6.A.6B.7C.8D.9
7.A.B.C.D.
8.函數(shù)y=-(x-2)|x|的遞增區(qū)間是()A.[0,1]B.(-∞,l)C.(l,+∞)D.[0,1)和(2,+∞)
9.設復數(shù)z滿足z+i=3-i,則=()A.-1+2iB.1-2iC.3+2iD.3-2i
10.在2,0,1,5這組數(shù)據(jù)中,隨機取出三個不同的數(shù),則數(shù)字2是取出的三個不同數(shù)的中位數(shù)的概率為()A.3/4B.5/8C.1/2D.1/4
二、填空題(10題)11.已知△ABC中,∠A,∠B,∠C所對邊為a,b,c,C=30°,a=c=2.則b=____.
12.已知函數(shù),若f(x)=2,則x=_____.
13.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
14.拋物線y2=2x的焦點坐標是
。
15.
16.
17.一個口袋中裝有大小相同、質地均勻的兩個紅球和兩個白球,從中任意取出兩個,則這兩個球顏色相同的概率是______.
18.若直線6x-4x+7=0與直線ax+2y-6=0平行,則a的值等于_____.
19.
20.從某校隨機抽取100名男生,其身高的頻率分布直方圖如下,則身高在[166,182]內的人數(shù)為____.
三、計算題(5題)21.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
22.解不等式4<|1-3x|<7
23.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
24.從含有2件次品的7件產品中,任取2件產品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
四、證明題(5題)26.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2
+(y+1)2
=8.
27.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
28.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
29.
30.若x∈(0,1),求證:log3X3<log3X<X3.
五、簡答題(5題)31.已知平行四邊形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中點,求。
32.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點恰好是坐標原點,求直線l的方程.
33.等差數(shù)列的前n項和為Sn,已知a10=30,a20=50。(1)求通項公式an。(2)若Sn=242,求n。
34.簡化
35.已知求tan(a-2b)的值
六、綜合題(5題)36.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.
37.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
39.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.
40.
參考答案
1.D函數(shù)的定義域與對應關系.A、B中定義域不同;C中對應關系不同;D表示同一函數(shù)
2.A
3.C正弦定理的應用,充要條件的判斷.大邊對大角,大角也就對應大邊.
4.D
5.A直線與圓的位置關系.圓心(2,-1)到直線y=-4的距離為|-4-(-1)|=3,而圓的半徑為3,所以直線與圓相切,
6.D
7.A
8.A
9.C復數(shù)的運算.由z+i=3-i,得z=3-2i,∴z=3+2i.
10.C隨機抽樣的概率.分析題意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4種取法,符合題意的取法有2種,故所求概率P=1/2.故選C
11.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
12.
13.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
14.(1/2,0)拋物線y2=2px(p>0)的焦點坐標為F(P/2,0)?!邟佄锞€方程為y2=2x,
∴2p=2,得P/2=1/2
∵拋物線開口向右且以原點為頂點,
∴拋物線的焦點坐標是(1/2,0)。
15.-2i
16.-2/3
17.1/3古典概型及概率計算公式.兩個紅球的編號為1,2兩個白球的編號為3,4,任取兩個的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),兩球顏色相同的事件有(1,2)和(3,4),故兩球顏色相同概率為2/6=1/3
18.-3,
19.4.5
20.64,在[166,182]區(qū)間的身高頻率為(0.050+0.030)×8(組距)=0.64,因此人數(shù)為100×0.64=64。
21.
22.
23.
24.
25.
26.
27.證明:考慮對數(shù)函數(shù)y=lgx的限制知
:當x∈(1,10)時,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
28.
29.
30.
31.平行四邊形ABCD,CD為AB平移所得,從B點開始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中點,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
32.
33.
34.
35.
36.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為
37.
38.
39.解:(1)斜率k=5/3,設直線l的方程5x-3y+m=0,直線l經過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年勞資專員試題及答案
- 年度保密工作總結
- 糖尿病專科護士考試試題(附答案)
- 選礦集控工操作考核試卷及答案
- 建設工程施工合同糾紛要素式起訴狀模板資深律師修訂版
- 保溫防腐工程糾紛專用!建設工程施工合同糾紛要素式起訴狀模板
- 2026 年離婚協(xié)議書 2026 版專業(yè)規(guī)范版
- 鐘山風景名勝區(qū)旅游服務中心項目塔式起重機基礎專項施工方案
- 定制家居員工年終總結(3篇)
- 電石生產副總年終總結(3篇)
- 第四單元地理信息技術的應用課件 【高效課堂+精研精講】高中地理魯教版(2019)必修第一冊
- 魯科版高中化學必修一教案全冊
- 管理養(yǎng)老機構 養(yǎng)老機構的服務提供與管理
- 提高隧道初支平整度合格率
- 2022年環(huán)保標記試題庫(含答案)
- 2023年版測量結果的計量溯源性要求
- 建筑能耗與碳排放研究報告
- GB 29415-2013耐火電纜槽盒
- 中國古代經濟試題
- 真空采血管的分類及應用及采血順序課件
- 軟件定義汽車:產業(yè)生態(tài)創(chuàng)新白皮書
評論
0/150
提交評論