下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
圓周角-教學教案第一課時圓周角(一)
教學目標:
(1)理解圓周角的概念,掌握圓周角的兩個特征、定理的內(nèi)容及簡單應用;
(2)繼續(xù)培養(yǎng)學生觀察、分析、想象、歸納和邏輯推理的能力;
(3)滲透由“特殊到一般”,由“一般到特殊”的數(shù)學思想方法.
教學重點:圓周角的概念和圓周角定理
教學難點:圓周角定理的證明中由“一般到特殊”的數(shù)學思想方法和完全歸納法的數(shù)學思想.
教學活動設計:(在教師指導下完成)
(一)圓周角的概念
1、復習提問:
(1)什么是圓心角?
答:頂點在圓心的角叫圓心角.
(2)圓心角的度數(shù)定理是什么?
答:圓心角的度數(shù)等于它所對弧的度數(shù).(如右圖)
2、引題圓周角:
如果頂點不在圓心而在圓上,則得到如左圖的新的角∠ACB,它就是圓周角.(如右圖)(演示圖形,提出圓周角的定義)
定義:頂點在圓周上,并且兩邊都和圓相交的角叫做圓周角
3、概念辨析:
教材P93中1題:判斷下列各圖形中的是不是圓周角,并說明理由.
學生歸納:一個角是圓周角的條件:①頂點在圓上;②兩邊都和圓相交.
(二)圓周角的定理
1、提出圓周角的度數(shù)問題
問題:圓周角的度數(shù)與什么有關系?
經(jīng)過電腦演示圖形,讓學生觀察圖形、分析圓周角與圓心角,猜想它們有無關系.引導學生在建立關系時注意弧所對的圓周角的三種情況:圓心在圓周角的一邊上、圓心在圓周角內(nèi)部、圓心在圓周角外部.
(在教師引導下完成)
(1)當圓心在圓周角的一邊上時,圓周角與相應的圓心角的關系:(演示圖形)觀察得知圓心在圓周角上時,圓周角是圓心角的一半.
提出必須用嚴格的數(shù)學方法去證明.
證明:(圓心在圓周角上)
(2)其它情況,圓周角與相應圓心角的關系:
當圓心在圓周角外部時(或在圓周角內(nèi)部時)引導學生作輔助線將問題轉(zhuǎn)化成圓心在圓周角一邊上的情況,從而運用前面的結論,得出這時圓周角仍然等于相應的圓心角的結論.
證明:作出過C的直徑(略)
圓周角定理:一條弧所對的
周角等于它所對圓心角的一半.
說明:這個定理的證明我們分成三種情況.這體現(xiàn)了數(shù)學中的分類方法;在證明中,后兩種都化成了第一種情況,這體現(xiàn)數(shù)學中的化歸思想.(對A層學生滲透完全歸納法)
(三)定理的應用
1、例題:如圖OA、OB、OC都是圓O的半徑,
∠AOB=2∠BOC.
求證:∠ACB=2∠BAC
讓學生自主分析、解得,教師規(guī)范推理過程.
說明:①推理要嚴密;②符號“”應用要嚴格,教師要講清.
2、鞏固練習:
(1)如圖,已知圓心角∠AOB=100°,求圓周角∠ACB、∠ADB的度數(shù)?
(2)一條弦分圓為1:4兩部分,求這弦所對的圓周角的度數(shù)?
說明:一條弧所對的圓周角有無數(shù)多個,卻這條弧所對的圓周角的度數(shù)只有一個,但一條弦所對的圓周角的度數(shù)只有兩個.
(四)總結
知識:(1)圓周角定義及其兩個特征;(2)圓周角定理的內(nèi)容.
思想方法:一種方法和一種思想:
在證明中,運用了數(shù)學中的分類方法和“化歸”思想.分類時應作到不重不漏;化歸思想是將復雜的問題轉(zhuǎn)化成一系列的簡單問題或已證問題.
(五)作業(yè)教材P100中習題A組6,7,8
第二、三課時圓周角(二、三)
教學目標:
(1)掌握圓周角定理的三個推論,并會熟練運用這些知識進行有關的計算和證明;
(2)進一步培養(yǎng)學生觀察、分析及解決問題的能力及邏輯推理能力;
(3)培養(yǎng)添加輔助線的能力和思維的廣闊性.
教學重點:圓周角定理的三個推論的應用.
教學難點:三個推論的靈活應用以及輔助線的添加.
教學活動設計:
(一)創(chuàng)設學習情境
問題1:畫一個圓,以B、C為弧的端點能畫多少個圓周角?它們有什么關系?
問題2:在⊙O中,若
=
,能否得到∠C=∠G呢?根據(jù)什么?反過來,若土∠C=∠G,是否得到
=
呢?
(二)分析、研究、交流、歸納
讓學生分析、研究,并充分交流.
注意:①問題解決,只要構造圓心角進行過渡即可;②若
=
,則∠C=∠G;但反之不成立.
老師組織學生歸納:
推論1:同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等.
重視:同弧說明是“同一個圓”;等弧說明是“在同圓或等圓中”.
問題:“同弧”能否改成“同弦”呢?同弦所對的圓周角一定相等嗎?(學生通過交流獲得知識)
問題3:(1)一個特殊的圓弧——半圓,它所對的圓周角是什么樣的角?
(2)如果一條弧所對的圓周角是90°,那么這條弧所對的圓心角是什么樣的角?
學生通過以上兩個問題的解決,在教師引導下得推論2:
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦直徑.
指出:這個推論是圓中一個很重要的性質(zhì),為在圓中確定直角、成垂直關系創(chuàng)造了條件,要熟練掌握.
啟發(fā)學生根據(jù)推論2推出推論3:
推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角是直角三角形.
指出:推論3是下面定理的逆定理:在直角三角形中,斜邊上的中線等于斜邊的一半.
(三)應用、反思
例1、如圖,AD是△ABC的高,AE是△ABC的外接圓直徑.
求證:AB·AC=AE·AD.
對A層同學,讓學生自主地分析問題、解決問題,進行生生交流,師生交流;其他層次的學生在教師引導下完成.
交流:①分析解題思路;②作輔助線的方法;③解題推理過程(要規(guī)范).
解(略)
教師引導學生思考:(1)此題還有其它證法嗎?(2)比較以上證法的優(yōu)缺點.
指出:在解圓的有關問題時,常常需要添加輔助線,構成直徑上的圓周角,以便利用直徑上的圓周角是直角的性質(zhì).
變式練習1:如圖,△ABC內(nèi)接于⊙O,∠1=∠2.
求證:AB·AC=AE·AD.
變式練習2:如圖,已知△ABC內(nèi)接于⊙O,弦AE平分
∠BAC交BC于D.
求證:AB·AC=AE·AD.
指出:這組題目比較典型,圓和相似三角形有密切聯(lián)系,證明圓中某些線段成比例,常常需要找出或通過輔助線構造出相似三角形.
例2:如圖,已知在⊙O中,直徑AB為10厘米,弦AC為6厘米,∠ACB的平分線交⊙O于D;
求BC,AD和BD的長.
解:(略)
說明:充分利用直徑所對的圓周角為直角,解直角三角形.
練習:教材P96中1、2
(四)小結(指導學生共同小結)
知識:本節(jié)課主要學習了圓周角定理的三個推論.這三個推論各具特色,作用各異,在今后的學習中應用十分廣泛,應熟練掌握.
能力:在解圓的有關問題時,常常需要添加輔助線,構成直徑所對的圓周角或構成相似三角形,這種基本技能技巧一定要掌握.
(五)作業(yè)
教材P100.習題A組9、10、12、13、14題;另外A層同學做P102B組3,4題.
探究活動
我們已經(jīng)學習了“圓周角的度數(shù)等于它所對的弧的度數(shù)的一半”,但當角的頂點在圓外(如圖①稱圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年泰山科技學院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026年上海政法學院單招綜合素質(zhì)筆試模擬試題含詳細答案解析
- 2026年河南職業(yè)技術學院單招職業(yè)技能考試參考題庫含詳細答案解析
- 2026年南昌廣播電視臺引進急需緊缺人才2人考試重點試題及答案解析
- 2026年湖南都市職業(yè)學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026貴州開放大學(貴州職業(yè)技術學院)招聘11人參考考試試題及答案解析
- 2026年南陽科技職業(yè)學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年四川工程職業(yè)技術學院高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- 2026年江西機電職業(yè)技術學院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026年宜賓職業(yè)技術學院單招綜合素質(zhì)筆試參考題庫含詳細答案解析
- 國家職業(yè)技術技能標準 4-10-01-05 養(yǎng)老護理員 人社廳發(fā)201992號
- 寵物寄養(yǎng)免責協(xié)議書模板
- 急性梗阻性化膿性膽管炎護理
- 2024深海礦產(chǎn)資源開采系統(tǒng)技術指南
- 2022通達經(jīng)營性物業(yè)貸調(diào)查報告
- 立式氣液分離器計算
- 財務每日工作匯報表格
- 2022-2023學年廣東省佛山市南海區(qū)、三水區(qū)九年級(上)期末數(shù)學試卷含解析
- 版權登記代理委托書
- 物流工業(yè)園區(qū)總體規(guī)劃
- 飛行機組失能的處置
評論
0/150
提交評論