2022屆北京市十五中高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆北京市十五中高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆北京市十五中高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆北京市十五中高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆北京市十五中高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余14頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,且,則()A. B. C. D.2.已知向量,夾角為,,,則()A.2 B.4 C. D.3.已知x,y滿(mǎn)足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.4.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.5.如圖,在四邊形中,,,,,,則的長(zhǎng)度為()A. B.C. D.6.已知向量,滿(mǎn)足,在上投影為,則的最小值為()A. B. C. D.7.已知向量,且,則m=()A.?8 B.?6C.6 D.88.已知數(shù)列滿(mǎn)足,(),則數(shù)列的通項(xiàng)公式()A. B. C. D.9.已知復(fù)數(shù)滿(mǎn)足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.10.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.611.已知正方體的棱長(zhǎng)為1,平面與此正方體相交.對(duì)于實(shí)數(shù),如果正方體的八個(gè)頂點(diǎn)中恰好有個(gè)點(diǎn)到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.12.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,亦稱(chēng)“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類(lèi)比“趙爽弦圖”.可類(lèi)似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列滿(mǎn)足,則,_____.若存在n∈N*使得成立,則實(shí)數(shù)λ的最小值為_(kāi)_____14.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.15.一個(gè)房間的地面是由12個(gè)正方形所組成,如圖所示.今想用長(zhǎng)方形瓷磚鋪滿(mǎn)地面,已知每一塊長(zhǎng)方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿(mǎn)房間地面的方法有_______種.16.若將函數(shù)的圖象沿軸向右平移個(gè)單位后所得的圖象與的圖象關(guān)于軸對(duì)稱(chēng),則的最小值為_(kāi)_______________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若,,證明:.18.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(19.(12分)已知的面積為,且.(1)求角的大小及長(zhǎng)的最小值;(2)設(shè)為的中點(diǎn),且,的平分線交于點(diǎn),求線段的長(zhǎng).20.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.21.(12分)設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實(shí)數(shù)a的值;(2)證明:f(x).22.(10分)某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開(kāi)學(xué)季利潤(rùn)不少于4800元的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過(guò)程中,需要對(duì)已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.2.A【解析】

根據(jù)模長(zhǎng)計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長(zhǎng)的求解,屬綜合基礎(chǔ)題.3.C【解析】

畫(huà)出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以?xún)芍本€垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于??碱}.4.D【解析】

先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡(jiǎn),然后用模長(zhǎng)公式求模長(zhǎng).【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.5.D【解析】

設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.6.B【解析】

根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開(kāi)平方求得結(jié)果;解題關(guān)鍵是需要通過(guò)夾角取值范圍的分析,得到的最小值.7.D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.8.A【解析】

利用數(shù)列的遞推關(guān)系式,通過(guò)累加法求解即可.【詳解】數(shù)列滿(mǎn)足:,,可得以上各式相加可得:,故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力.9.D【解析】

按照復(fù)數(shù)的運(yùn)算法則先求出,再寫(xiě)出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.10.C【解析】

根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當(dāng)且僅當(dāng)時(shí)取“=”號(hào).

答案:C【點(diǎn)睛】本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁亲詈笠欢ㄒ?yàn)證等號(hào)能否成立,屬于基礎(chǔ)題.11.B【解析】

此題畫(huà)出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個(gè)點(diǎn)到平面的距離為;如圖(2)恰好有4個(gè)點(diǎn)到平面的距離為;如圖(3)恰好有6個(gè)點(diǎn)到平面的距離為.所以本題答案為B.【點(diǎn)睛】本題以空間幾何體為載體考查點(diǎn),面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力和知識(shí)方法的遷移能力,屬于難題.12.A【解析】

根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用“退一作差法”求得數(shù)列的通項(xiàng)公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進(jìn)而求得的最小值.【詳解】當(dāng)時(shí)兩式相減得所以當(dāng)時(shí),滿(mǎn)足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增,的最小項(xiàng),即有的最小值為.故答案為:(1).(2).【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項(xiàng)公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問(wèn)題的求解策略,屬于中檔題.14.【解析】

根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)?,故或,解得故答案為?【點(diǎn)睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.15.11【解析】

將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類(lèi),在每一類(lèi)里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類(lèi),在其中會(huì)有相同元素的排列問(wèn)題,需用到“縮倍法”.采用分類(lèi)計(jì)數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類(lèi):5個(gè):,3個(gè),2個(gè):,1個(gè),4個(gè):,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個(gè):,1個(gè),2個(gè):,綜上,一共有(種).故答案為:11.【點(diǎn)睛】本題考查了分類(lèi)計(jì)數(shù)原理,排列問(wèn)題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.16.【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對(duì)稱(chēng)性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個(gè)單位長(zhǎng)度,可得的圖象.根據(jù)圖象與的圖象關(guān)于軸對(duì)稱(chēng),可得,,,即時(shí),的最小值為.故答案為:.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對(duì)稱(chēng)性,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)見(jiàn)證明【解析】

(1)利用零點(diǎn)分段法討論去掉絕對(duì)值求解;(2)利用絕對(duì)值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時(shí),不等式可化為.當(dāng)時(shí),,,所以;當(dāng)時(shí),,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點(diǎn)睛】本題主要考查含有絕對(duì)值不等式問(wèn)題的求解,含有絕對(duì)值不等式的解法一般是使用零點(diǎn)分段討論法.18.(I)π;(II)-【解析】

(I)化簡(jiǎn)得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點(diǎn)睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19.(1),;(2).【解析】

(1)根據(jù)面積公式和數(shù)量積性質(zhì)求角及最大邊;(2)根據(jù)的長(zhǎng)度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因?yàn)樵谥?,,所以,因?yàn)椋ó?dāng)且僅當(dāng)時(shí)取等),所以長(zhǎng)的最小值為;(2)在三角形中,因?yàn)闉橹芯€,所以,,所以,因?yàn)?,所以,所以,由?)知,所以,或,,所以,因?yàn)闉榻瞧椒志€,,,或2,所以,或,所以.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,余弦定理解三角形及三角形面積公式的應(yīng)用,屬于中檔題.20.(1)見(jiàn)解析(2)【解析】

(1)第(1)問(wèn),連交于,連接.證明//,即證平面.(2)第(2)問(wèn),主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點(diǎn),為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過(guò)作交PD于N,過(guò)F作FM||AD交CD于M,連接MN,G為△PAD的重心,又ABCD為梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF為平行四邊形.因?yàn)镚F||MN,(2)方法一:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又為正三角形,得,∴,得∴三棱錐的體積為.方法二:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由,∴而又為正三角形,得,得.∴,∴三棱錐的體積為.21.(1)a=1;(2)見(jiàn)解析【解析】

(1)由題意可得|x﹣a|≥4x,分類(lèi)討論去掉絕對(duì)值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對(duì)值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當(dāng)x≥a時(shí),x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當(dāng)x<a時(shí),a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,當(dāng)且僅當(dāng)a時(shí)取等號(hào),故f(x).【點(diǎn)睛】本題主要考查絕對(duì)值三角不等式,基本不等式,絕對(duì)值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類(lèi)討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.22.(1),眾數(shù)為150;(2);(3)【解析】

(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個(gè)開(kāi)學(xué)季內(nèi)市

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論