付費下載
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
To
proceed
with
the
Legrange
equations,
it
is
clear
we
need
toknow
how
to
calculate
different
forms
of
strain
energy
and
kinetic
energyin
solids.
We
therefore
look
at
energies
in
a
deformed
beam.從拉氏方程出發(fā),計算梁的變形能,動能。We
look
at
something
called
the
“Rayleigh
Ritz
method”Calculate
the
mode
sh s
of
a
beam.
This
is
a
generalized‘prototype’method
for
the
finite
element
method.瑞利--里茲法計算梁的振型—有限元方法的“原型”Lecture3--伯努力梁Flexural
vibration
of
beams梁的彎曲振動Euler–Bernoulli
beams(‘simple
beams’)The
Newtonian
solution.
解y,
displacement
vx
0dxx
LxQMxM
M
dxdxTotal
vertical
force
acting
on
the
element
dxNewton’s
second
law
of
motion
for
dx
giveswhereρ
is
density
and
A
the
cross-sectionalareaTotal
moment
acting
on
element
dx
about
its
centre
point
x
xY
Q
dx
Q
dx,Q
2vx
dx
Adx
t
2
,x
t
2Q
2v
A
,dx
QdxQdx
dx
M
C
M
dx
MMM
dx
x
2
2
xThe
last
term
can
be
neglected
(second
order
smallthe
othersty)
in
comparison
with(1)QMMM
x
dxdxNewton’s
second
law
of
motion
then
gives(動量矩定理)where
I
is
the
second
moment
of
area
of
the
cross-section(橫截面的二階矩)θ
is
angle
of
rotation
of
element
dxFor
‘simple’
beam
theory
weusually
neglect
the
rotational
inertia
on
the
RHS(簡梁,略去轉動慣性)RHS—rectangle
hollow
section2MM
Q
0xSubstituting
(2)
into
(1)
to
eliminate
Q
givesThe
moment
curvature
(曲率)relationship,assuming
that
all
the
displacementv
is
due
bending
is(any
displacement
due
to
shear
is
neglected
for‘simple’beams).略去剪切效應
02
M
2vx2
A
t
2(2)(3)x
t
2
x
t
2Q
2vdx
Qdx
Idx
A
,(1)This
is
the
(familiar?)
simple
beam
equation梁的彎曲振動方程This
is
Hooke’s
law
for
bending.‘Moment
=
Bendingstiffness
·
curvature’(彎曲剛度
曲率)like
‘F
=
k
x’Substituting
(4)
into
(3)
to
eliminate
M2vM
EI
x2×(4)4v
2vEI
x4
A
t
2
0A
t
2
,Q
2vx(1)xM
Q
0(2)t
2A
02
M
2vx2(3)用于繞中心軸轉動用于橫向運動(2)代入(1)略去。。。Strain
Energy
in
a
beam
bending
element梁的彎曲單元中的變形能Simple
beam
theory
assumes
plane
sections
(橫截面的平面假設)which
arenormal
to
the
un-deformed
axis
of
the
beam
remain
plane
after
bending
and
are
stillnormal
to
the
deformed
axis.y,
displacement
vThe
axial
displacement
of
a
point
within
the
beam
ataheight
y
is
given
bydxxuxux,
y
y
vxv
slope斜率u(x,y)yThe
strain
components
of
this
are
therefore應變分量...we
are
neglecting
shear
in
this
treatment
略去剪切效應The
strain
energy
is
therefore
given
byThe
normal
stress
is
given
byyu(x,y)v2xx
y
2
x
u
u
v
0y
xxySoVx
x2
U
1
dV
x
E
xand
dV
dAdx
x
EI
2
dx
2v
2
2v
22
0
x
1
L2
0
A1
L2
V1U
x
x
dV
Ey
dAdx
222
Awhere
I
1
y2dANotation
for
a
beam
in
bending
Lx,uyThe
Rayleigh
RitzMethodRayleigh
Ritz
method
for
a
beamy,vz,
wLegrange
equationsStrain
energyKinetic
energyConsider
one
forceid
T
dt
q
(1)Qi
Fy
x,t
U
dxz
EI
0x2
2vx,
t
22
1
L(2)
dx0
vxt
,
21
LT
A2
t(3)The
Rayleigh-Ritz
method
approximates
the
exact
solution
witha
finite
expansionof
the
form:
近似解A
series
expansion
..
could
bea
polynomialseries,
or
a
Fourier
orsomething
else
depending
on
whatk? (x)
are.where
{?
k(x),
k=
1,
2,
..
m}
is
a
set
of
prescribed
functions
of
x
which
arelinearly
independent
基函數事先選定and
qk(t)
are
unknown
functions
of
time,
t,
to
be
determined未知函數待求
m
kx
qk
t
k
1
Rev
x,t
The
prescribed
functions?
k(x)
are
required
to
satisfy
the
following
conditions:to
be
linearly
independent
i.e.
one
cannot
be
described
as
a
linearcombination
of
the
others.基函數之間相互獨立to
be
p
times
differentiable,where
p
is
the
order
of
highest
derivativeappearing
in
the
expression
of
the
strain
energy3)
satisfy
the
geometric
boundary
conditionsp
階可導滿足幾何邊界條件4)
form
a
complete
series
so
that2構成完備的函數序列i.e.
the
expansion
tends
to
an
accurateapproximation
as
you
take
more
and
more
terms.0lim
Lmk
1mx
qk
t
v
xk
The
prescribed
functions
?
k(x)might
be
常用的基函數1)polynomialfunctions
多項式函數2)trigonometric
functions(a
Fourier
expansion)三角函數(付氏展開形式)wherez
is
a
complex
number z
為復數3)
Legendrepolynomialswherem
32
m
mexpz
,
x
expz
,
xm1
1
2
x
expz
,
x勒讓德多項式2m
1xd
m
x
md
m
x1
m1
x
m
10
4)Chebyshev
polynomials
切比雪夫多項式kindSecond
kindThe
set
of
functiontaken
is
called
a
set
of
basisfunctions.
The
series
expansion
is
therefore
said
to‘span’
a
‘function
space’
–
i.e.
the
set
of
all
functionsthat
can
be
made
out
of
linear
combinations
of
this
setof
functions.基函數
函數空間
m
x
cosmcos1
xsin
cos1
xm
x
1sin
m
1cos
x1)
Strainenergy
應變能So
ifis
written
in
the
matrix
form:Notation
means
a
row
matrix.行陣Here’s
a
trick.
The
differentiation
only
has
to
be
done
to
thebasis
functions,because
the
coefficients
are
just
numbers
now.只對基函數求導數x2EIU
z
dx
2vx,
t
201
L2mvx,
t
k
xqk
t
k
1
qt
qt
m
tq
211
2
m
vxq
tt
x
,
q
t
qt
xqm
t
x22
q1
t
m
x22
1
2
x2
x22
22
x2vx,
t
2x
x
xandso
thatwhereWe
can
call
this[K]because
we
saw
that
Ugave[K]at
ofthe
last
lecture應變能給出剛度陣This
is
a
clever
dodge.
Becausethe
coefficientsof
the
series
arejust
numbers
we
can
take
themout
of
the
integral.
Instead
ofintegrating
some
awkwardfunction
we
now
only
integratethe
tamebasis
functions.在此只對基函數積分是十分聰明的t
x2Tqt
qx2
x2
2vx,
t
2
2xT
2x
K
qt
TZU
1
qt
T
EI21
2
2
q
t2dx
q
tx
0
xL
2xT
2xZK
EIdxx
x0
2
2L
2xT
2x2)
Kinetic
energyand
putting
inthen?
mass
×
velocity2
,
summed
forall
slices
dx
thick.
dx
t0
vx,
t
21
LT
A2
,
tqtqm
tq2121
vxt
,
t
t
t
qt
qt
qtm
tm
21
x21
xq
xxtandso
thatwheredt
dvx,t
1
T
ttMT
qt
TqtxxALT120
dx
x2M
A0動能給出質量陣Now,with
no
applied
forces,the
terms
of
the
Legrange
equations
give用拉氏方程可得控制方程as
we
saw
before.Assuming
harmonic
motion
for
the
qk(t)parameters
in
the
form
q(t)=Re{reiωt
},the
natural
frequencies
ωj
and
corresponding
modes
can
be
calculated
from
theeigen-value
problem
解特征值問題,可得固有頻率,振型等K
i
M
rj
0MqKq
0where and
the
mode
shs
are
given
by振型
2j
j111Rer1
Rer
Rer
Tj
x
x
Rer
Example:Flexural
Vibration
of
Clamped
–
Simply
Supported
Beamusing
theRayleigh-Ritz
methodBoundary
conditions:LeftRightLx,uy,vv0,
t
0v0,
t
x
0vL,
t
02vL,
t
0MZ
0
i.ex2The
Rayleigh-Ritz
method
approximates
the
transverse
displacement
with
a
finiteexpansion
of
the
form:橫向位移的有限項展開式Let’s
choose
the
basis
functions
to
beso
thatmk
km
xA
cos
tk
1v
x,
t
kL
xk
1
x
xv
m321
2
mL
xcos
tx,t
A
xm1L
x
A
x
L
x
A
xthen
the
four
conditions
necessary
to
implement
theRayleigh-Ritz
method
are
verified.In
particular
we
have
managed
to
arrange
that
the
geometric
boundary
conditions
areautomatically
satisfied
by
the
basis
functions
we
have
chosen.Left
end
side(clamped)
左邊界條件whereRight
end
side(simply-supported)
右邊界條件'k
1xkkk
1
0
0
0
kv0,
t
0v0,
t
0
0
0
0'k
1
k
1k
1k
1xkL
Lk
1
L
k
2
L
kvL,
t
0vL,
t
0
L
L
L
L
0'kk
x
dxx
k
1Lxk
1
k
2xk
1
Lk
1
d
Then ut
the
approximation
into
the
terms
of
the
Lagrange
equations.將近似解代入拉氏方程and
put
inEIU
Lz
dx
02x22
vx,
t
2
1T
2
01
LAv2
x,
t
dxvm
x,t
x
A
cvm
x,
t
x2
L
x1)
Strain
energy
L
xAm
cost
A
cost
A
cost
21m1x3
L
x
xthent
txxT
2x2
1m
xv,
t22t
TZK
EI02U
1
whereWewantthe
elements
of
the
matrixThis
is
just
a
column
times
a
row
so
the
terms
in
the
matrix
are
easy
to
define,
theyareLet’s
say
we
will
only
take
2
terms
in
the
series.That
way
we
will
get
a
twoby
twomatrix.The
point
is
that
these
arecalculable.
They
are
easyintegrals
to
evaluate
withonly
known
terms
in
themsince:
k
x
x
L
xk
11k
1kx
2
xkk
x1kk
1
k12xkkdx2dx2
xdk
x
k
xd
1
TZK
EI0Li0i,
j
z
j
1
jLx
j
2
j
1x
x
dx
iLx
i
2i
1
i
1K
EI
j
1
ji1002201,13
LLL
EI
4L2
x
12Lx2
12
x
4EIL34L
24Lx
36
x2
dx
EI
K
EI
2L
6x
dxsimilarly2,2K
24
5
EIL5
4EIL4
and1,22,1K
K2)
Kinetic
energy02T
Av
x,
t
dx21
L
m
q
txtxvm
,
2
,
t
Lthen
1
2
2
1
T
M0wherethen
the
elementsof
the
matrix
are
given
by:Again
just
using
our
two
functions
x2
L
xkk
1Since:
x
x
L
x
0
ij,and
x3
L
x105etc.7202x
1,1L
x
dx
ALM
ALthe
following
system
of
equation
for
free
vibrations
is
obtainedUsing
Lagrange's
equations
we
can
now
derive
the
equation
of
motion
for
freevibrationd
T
U
0dt
qs
qswhere
Mq
d
T
m
dt
q
d
T
dt
q
1
Kq
m
q
U
q
U
1MqKq
0Assuming
a
harmonic
solution
so
that:the
following
matrix
eigen-value
problem
is
obtainedK
MA
0if
we
write
2This
is
a
set
of
m
linear
homogenous
equations
in
the
unknownsThe
system
of
equations
has
a
non-zero
solutions
ifdetK
i
M
0
A3
A1
cost
22
cost
A
A1
A3
cost
A
cost
qt
A1,
A2
,
Amexpanding
the
determinant
gives
a
polynomial
of
degree
m
in
λ.
The
polynomialwill
have
m
roots
λ1,
λ2
,…λ
m.
These
roots
are
called
eigen-values.Remembering
that
λ
=ω
2
the
natural
frequencies
are
given
by
λj
=ωj
2For
each
eigenvalue
λj
there
is
a
unique
solution
(to
withinan
arbitrary
constant)to
the
equationThese
solutions
areknownas
eigenvectors.K
MA
0j
jforAWhen
combined
with
the
prescribed
functions
?
k
(x)
they
define
thesh s
ofode
shΦ
j(x)
is
given
byBy ng
our
eigen-
ysisytically
we
can
getresults
that
are
still
in
termsof
E,
ρ,
L,
I,
A.
It
is
only
a2by
2
matrix
eigen-valueproblem
after
all.I
have
only
put
specificvalues
in
so
that
I
can
plotthe
eigenvectors
in
.the
modes
in
an
approximate
sense
since
ea
jx
xAjGoing
back
to
our
example
calculationIf
we
have
a
steel
beamE
207
109
N
m2
7860
kg
m3with
geometryL
9.144
mI
1.774
104m4A
1.006
102
m2Then
we
get
the
two
by
twomatrix
equation105
4
4L4L3
4L424L3
A1.021.12
1.23
e111.0269
e12frequencies20.04
Hz97.72
Hz158593.7698
e50110105In
fact
we
can
do
a
bit
more
algebra
and
work
out
what
teral
Ki,j
andMi,j
willbe.
可以給出剛度陣和質量陣中元素的一般表達式:ij
1
1
xjijjii
dxxLjjiixdjxjLLLLiZj
K
EI
00ij
100,dx
2
1
2
1
1
21
2
jxijjL
i2idx
1
2
11
xT
TZK
EI0
i
j
1i
1
Li
ji
1i
j
2
j
1
L i
2
j
2
j
1
i
j
1
i
ji
1i
j
1
j
Li
j
1
i
2i
1
j
1
jLi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理職業(yè)規(guī)劃與就業(yè)指導
- 分析檢驗技術專業(yè)介紹
- 蘇教版三年級下冊語文16《跟蹤臺風的衛(wèi)星》
- 色彩肌膚護理的科學實踐
- 青少年皮膚去角質指南
- 設計執(zhí)行力培訓的課件
- 出版專業(yè)技術人員職業(yè)資格制度
- 公司關于環(huán)境保護的制度
- 保證資金風險等級分類制度
- 超市耗材管理培訓課件
- 黑龍江省大慶中學2025-2026學年高一(上)期末物理試卷(含答案)
- 2025年csco肝癌治療指南
- 高中生寒假安全教育主題班會
- 2025年銀行縣支行支部書記抓黨建述職報告
- 2026云南公務員考試(6146人)易考易錯模擬試題(共500題)試卷后附參考答案
- 畜牧技術員安全培訓效果測試考核試卷含答案
- 2026屆天津一中高三語文第一學期期末質量檢測模擬試題含解析
- 2025-2026學年第一學期初中物理教研組工作總結報告
- 2025年直招軍官筆試題型及答案
- 2026年小學一二年級第一學期無紙筆化考核方案及測試題(一二年級語文數學)
- 2025年時事政治試題庫完整參考詳解(完整版)及答案
評論
0/150
提交評論