考試大禮包-有限元版_第1頁
考試大禮包-有限元版_第2頁
考試大禮包-有限元版_第3頁
考試大禮包-有限元版_第4頁
考試大禮包-有限元版_第5頁
免費預覽已結束,剩余23頁可下載查看

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

To

proceed

with

the

Legrange

equations,

it

is

clear

we

need

toknow

how

to

calculate

different

forms

of

strain

energy

and

kinetic

energyin

solids.

We

therefore

look

at

energies

in

a

deformed

beam.從拉氏方程出發(fā),計算梁的變形能,動能。We

look

at

something

called

the

“Rayleigh

Ritz

method”Calculate

the

mode

sh s

of

a

beam.

This

is

a

generalized‘prototype’method

for

the

finite

element

method.瑞利--里茲法計算梁的振型—有限元方法的“原型”Lecture3--伯努力梁Flexural

vibration

of

beams梁的彎曲振動Euler–Bernoulli

beams(‘simple

beams’)The

Newtonian

solution.

解y,

displacement

vx

0dxx

LxQMxM

M

dxdxTotal

vertical

force

acting

on

the

element

dxNewton’s

second

law

of

motion

for

dx

giveswhereρ

is

density

and

A

the

cross-sectionalareaTotal

moment

acting

on

element

dx

about

its

centre

point

x

xY

Q

dx

Q

dx,Q

2vx

dx

Adx

t

2

,x

t

2Q

2v

A

,dx

QdxQdx

dx

M

C

M

dx

MMM

dx

x

2

2

xThe

last

term

can

be

neglected

(second

order

smallthe

othersty)

in

comparison

with(1)QMMM

x

dxdxNewton’s

second

law

of

motion

then

gives(動量矩定理)where

I

is

the

second

moment

of

area

of

the

cross-section(橫截面的二階矩)θ

is

angle

of

rotation

of

element

dxFor

‘simple’

beam

theory

weusually

neglect

the

rotational

inertia

on

the

RHS(簡梁,略去轉動慣性)RHS—rectangle

hollow

section2MM

Q

0xSubstituting

(2)

into

(1)

to

eliminate

Q

givesThe

moment

curvature

(曲率)relationship,assuming

that

all

the

displacementv

is

due

bending

is(any

displacement

due

to

shear

is

neglected

for‘simple’beams).略去剪切效應

02

M

2vx2

A

t

2(2)(3)x

t

2

x

t

2Q

2vdx

Qdx

Idx

A

,(1)This

is

the

(familiar?)

simple

beam

equation梁的彎曲振動方程This

is

Hooke’s

law

for

bending.‘Moment

=

Bendingstiffness

·

curvature’(彎曲剛度

曲率)like

‘F

=

k

x’Substituting

(4)

into

(3)

to

eliminate

M2vM

EI

x2×(4)4v

2vEI

x4

A

t

2

0A

t

2

,Q

2vx(1)xM

Q

0(2)t

2A

02

M

2vx2(3)用于繞中心軸轉動用于橫向運動(2)代入(1)略去。。。Strain

Energy

in

a

beam

bending

element梁的彎曲單元中的變形能Simple

beam

theory

assumes

plane

sections

(橫截面的平面假設)which

arenormal

to

the

un-deformed

axis

of

the

beam

remain

plane

after

bending

and

are

stillnormal

to

the

deformed

axis.y,

displacement

vThe

axial

displacement

of

a

point

within

the

beam

ataheight

y

is

given

bydxxuxux,

y

y

vxv

slope斜率u(x,y)yThe

strain

components

of

this

are

therefore應變分量...we

are

neglecting

shear

in

this

treatment

略去剪切效應The

strain

energy

is

therefore

given

byThe

normal

stress

is

given

byyu(x,y)v2xx

y

2

x

u

u

v

0y

xxySoVx

x2

U

1

dV

x

E

xand

dV

dAdx

x

EI

2

dx

2v

2

2v

22

0

x

1

L2

0

A1

L2

V1U

x

x

dV

Ey

dAdx

222

Awhere

I

1

y2dANotation

for

a

beam

in

bending

Lx,uyThe

Rayleigh

RitzMethodRayleigh

Ritz

method

for

a

beamy,vz,

wLegrange

equationsStrain

energyKinetic

energyConsider

one

forceid

T

dt

q

(1)Qi

Fy

x,t

U

dxz

EI

0x2

2vx,

t

22

1

L(2)

dx0

vxt

,

21

LT

A2

t(3)The

Rayleigh-Ritz

method

approximates

the

exact

solution

witha

finite

expansionof

the

form:

近似解A

series

expansion

..

could

bea

polynomialseries,

or

a

Fourier

orsomething

else

depending

on

whatk? (x)

are.where

{?

k(x),

k=

1,

2,

..

m}

is

a

set

of

prescribed

functions

of

x

which

arelinearly

independent

基函數事先選定and

qk(t)

are

unknown

functions

of

time,

t,

to

be

determined未知函數待求

m

kx

qk

t

k

1

Rev

x,t

The

prescribed

functions?

k(x)

are

required

to

satisfy

the

following

conditions:to

be

linearly

independent

i.e.

one

cannot

be

described

as

a

linearcombination

of

the

others.基函數之間相互獨立to

be

p

times

differentiable,where

p

is

the

order

of

highest

derivativeappearing

in

the

expression

of

the

strain

energy3)

satisfy

the

geometric

boundary

conditionsp

階可導滿足幾何邊界條件4)

form

a

complete

series

so

that2構成完備的函數序列i.e.

the

expansion

tends

to

an

accurateapproximation

as

you

take

more

and

more

terms.0lim

Lmk

1mx

qk

t

v

xk

The

prescribed

functions

?

k(x)might

be

常用的基函數1)polynomialfunctions

多項式函數2)trigonometric

functions(a

Fourier

expansion)三角函數(付氏展開形式)wherez

is

a

complex

number z

為復數3)

Legendrepolynomialswherem

32

m

mexpz

,

x

expz

,

xm1

1

2

x

expz

,

x勒讓德多項式2m

1xd

m

x

md

m

x1

m1

x

m

10

4)Chebyshev

polynomials

切比雪夫多項式kindSecond

kindThe

set

of

functiontaken

is

called

a

set

of

basisfunctions.

The

series

expansion

is

therefore

said

to‘span’

a

‘function

space’

i.e.

the

set

of

all

functionsthat

can

be

made

out

of

linear

combinations

of

this

setof

functions.基函數

函數空間

m

x

cosmcos1

xsin

cos1

xm

x

1sin

m

1cos

x1)

Strainenergy

應變能So

ifis

written

in

the

matrix

form:Notation

means

a

row

matrix.行陣Here’s

a

trick.

The

differentiation

only

has

to

be

done

to

thebasis

functions,because

the

coefficients

are

just

numbers

now.只對基函數求導數x2EIU

z

dx

2vx,

t

201

L2mvx,

t

k

xqk

t

k

1

qt

qt

m

tq

211

2

m

vxq

tt

x

,

q

t

qt

xqm

t

x22

q1

t

m

x22

1

2

x2

x22

22

x2vx,

t

2x

x

xandso

thatwhereWe

can

call

this[K]because

we

saw

that

Ugave[K]at

ofthe

last

lecture應變能給出剛度陣This

is

a

clever

dodge.

Becausethe

coefficientsof

the

series

arejust

numbers

we

can

take

themout

of

the

integral.

Instead

ofintegrating

some

awkwardfunction

we

now

only

integratethe

tamebasis

functions.在此只對基函數積分是十分聰明的t

x2Tqt

qx2

x2

2vx,

t

2

2xT

2x

K

qt

TZU

1

qt

T

EI21

2

2

q

t2dx

q

tx

0

xL

2xT

2xZK

EIdxx

x0

2

2L

2xT

2x2)

Kinetic

energyand

putting

inthen?

mass

×

velocity2

,

summed

forall

slices

dx

thick.

dx

t0

vx,

t

21

LT

A2

,

tqtqm

tq2121

vxt

,

t

t

t

qt

qt

qtm

tm

21

x21

xq

xxtandso

thatwheredt

dvx,t

1

T

ttMT

qt

TqtxxALT120

dx

x2M

A0動能給出質量陣Now,with

no

applied

forces,the

terms

of

the

Legrange

equations

give用拉氏方程可得控制方程as

we

saw

before.Assuming

harmonic

motion

for

the

qk(t)parameters

in

the

form

q(t)=Re{reiωt

},the

natural

frequencies

ωj

and

corresponding

modes

can

be

calculated

from

theeigen-value

problem

解特征值問題,可得固有頻率,振型等K

i

M

rj

0MqKq

0where and

the

mode

shs

are

given

by振型

2j

j111Rer1

Rer

Rer

Tj

x

x

Rer

Example:Flexural

Vibration

of

Clamped

Simply

Supported

Beamusing

theRayleigh-Ritz

methodBoundary

conditions:LeftRightLx,uy,vv0,

t

0v0,

t

x

0vL,

t

02vL,

t

0MZ

0

i.ex2The

Rayleigh-Ritz

method

approximates

the

transverse

displacement

with

a

finiteexpansion

of

the

form:橫向位移的有限項展開式Let’s

choose

the

basis

functions

to

beso

thatmk

km

xA

cos

tk

1v

x,

t

kL

xk

1

x

xv

m321

2

mL

xcos

tx,t

A

xm1L

x

A

x

L

x

A

xthen

the

four

conditions

necessary

to

implement

theRayleigh-Ritz

method

are

verified.In

particular

we

have

managed

to

arrange

that

the

geometric

boundary

conditions

areautomatically

satisfied

by

the

basis

functions

we

have

chosen.Left

end

side(clamped)

左邊界條件whereRight

end

side(simply-supported)

右邊界條件'k

1xkkk

1

0

0

0

kv0,

t

0v0,

t

0

0

0

0'k

1

k

1k

1k

1xkL

Lk

1

L

k

2

L

kvL,

t

0vL,

t

0

L

L

L

L

0'kk

x

dxx

k

1Lxk

1

k

2xk

1

Lk

1

d

Then ut

the

approximation

into

the

terms

of

the

Lagrange

equations.將近似解代入拉氏方程and

put

inEIU

Lz

dx

02x22

vx,

t

2

1T

2

01

LAv2

x,

t

dxvm

x,t

x

A

cvm

x,

t

x2

L

x1)

Strain

energy

L

xAm

cost

A

cost

A

cost

21m1x3

L

x

xthent

txxT

2x2

1m

xv,

t22t

TZK

EI02U

1

whereWewantthe

elements

of

the

matrixThis

is

just

a

column

times

a

row

so

the

terms

in

the

matrix

are

easy

to

define,

theyareLet’s

say

we

will

only

take

2

terms

in

the

series.That

way

we

will

get

a

twoby

twomatrix.The

point

is

that

these

arecalculable.

They

are

easyintegrals

to

evaluate

withonly

known

terms

in

themsince:

k

x

x

L

xk

11k

1kx

2

xkk

x1kk

1

k12xkkdx2dx2

xdk

x

k

xd

1

TZK

EI0Li0i,

j

z

j

1

jLx

j

2

j

1x

x

dx

iLx

i

2i

1

i

1K

EI

j

1

ji1002201,13

LLL

EI

4L2

x

12Lx2

12

x

4EIL34L

24Lx

36

x2

dx

EI

K

EI

2L

6x

dxsimilarly2,2K

24

5

EIL5

4EIL4

and1,22,1K

K2)

Kinetic

energy02T

Av

x,

t

dx21

L

m

q

txtxvm

,

2

,

t

Lthen

1

2

2

1

T

M0wherethen

the

elementsof

the

matrix

are

given

by:Again

just

using

our

two

functions

x2

L

xkk

1Since:

x

x

L

x

0

ij,and

x3

L

x105etc.7202x

1,1L

x

dx

ALM

ALthe

following

system

of

equation

for

free

vibrations

is

obtainedUsing

Lagrange's

equations

we

can

now

derive

the

equation

of

motion

for

freevibrationd

T

U

0dt

qs

qswhere

Mq

d

T

m

dt

q

d

T

dt

q

1

Kq

m

q

U

q

U

1MqKq

0Assuming

a

harmonic

solution

so

that:the

following

matrix

eigen-value

problem

is

obtainedK

MA

0if

we

write

2This

is

a

set

of

m

linear

homogenous

equations

in

the

unknownsThe

system

of

equations

has

a

non-zero

solutions

ifdetK

i

M

0

A3

A1

cost

22

cost

A

A1

A3

cost

A

cost

qt

A1,

A2

,

Amexpanding

the

determinant

gives

a

polynomial

of

degree

m

in

λ.

The

polynomialwill

have

m

roots

λ1,

λ2

,…λ

m.

These

roots

are

called

eigen-values.Remembering

that

λ

2

the

natural

frequencies

are

given

by

λj

=ωj

2For

each

eigenvalue

λj

there

is

a

unique

solution

(to

withinan

arbitrary

constant)to

the

equationThese

solutions

areknownas

eigenvectors.K

MA

0j

jforAWhen

combined

with

the

prescribed

functions

?

k

(x)

they

define

thesh s

ofode

shΦ

j(x)

is

given

byBy ng

our

eigen-

ysisytically

we

can

getresults

that

are

still

in

termsof

E,

ρ,

L,

I,

A.

It

is

only

a2by

2

matrix

eigen-valueproblem

after

all.I

have

only

put

specificvalues

in

so

that

I

can

plotthe

eigenvectors

in

.the

modes

in

an

approximate

sense

since

ea

jx

xAjGoing

back

to

our

example

calculationIf

we

have

a

steel

beamE

207

109

N

m2

7860

kg

m3with

geometryL

9.144

mI

1.774

104m4A

1.006

102

m2Then

we

get

the

two

by

twomatrix

equation105

4

4L4L3

4L424L3

A1.021.12

1.23

e111.0269

e12frequencies20.04

Hz97.72

Hz158593.7698

e50110105In

fact

we

can

do

a

bit

more

algebra

and

work

out

what

teral

Ki,j

andMi,j

willbe.

可以給出剛度陣和質量陣中元素的一般表達式:ij

1

1

xjijjii

dxxLjjiixdjxjLLLLiZj

K

EI

00ij

100,dx

2

1

2

1

1

21

2

jxijjL

i2idx

1

2

11

xT

TZK

EI0

i

j

1i

1

Li

ji

1i

j

2

j

1

L i

2

j

2

j

1

i

j

1

i

ji

1i

j

1

j

Li

j

1

i

2i

1

j

1

jLi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論