【其中考試】江西省某校九年級(jí)(上)期中數(shù)學(xué)試卷答案與詳細(xì)解析_第1頁
【其中考試】江西省某校九年級(jí)(上)期中數(shù)學(xué)試卷答案與詳細(xì)解析_第2頁
【其中考試】江西省某校九年級(jí)(上)期中數(shù)學(xué)試卷答案與詳細(xì)解析_第3頁
【其中考試】江西省某校九年級(jí)(上)期中數(shù)學(xué)試卷答案與詳細(xì)解析_第4頁
【其中考試】江西省某校九年級(jí)(上)期中數(shù)學(xué)試卷答案與詳細(xì)解析_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試卷第=page3838頁,總=sectionpages3838頁試卷第=page3737頁,總=sectionpages3838頁江西省某校九年級(jí)(上)期中數(shù)學(xué)試卷一、選擇題(本大題共有6個(gè)小題,每小題3分,共18分)

1.下列圖案中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C. D.

2.下列方程是關(guān)于x的一元二次方程的是()A. B.2x2-y+6=0

C.ax2+bx

3.拋物線y=(x+2)2A.(2,?1) B.(-2,?-1) C.(-2,?1) D.(2,?-1)

4.下列說法:

①三點(diǎn)確定一個(gè)圓;

②圓中最長(zhǎng)弦是直徑;

③長(zhǎng)度相等的弧是等??;

④三角形只有一個(gè)外接圓.

其中真命題有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

5.如圖,將△AOB繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)70°,得到△COD,若∠COD=40°,則∠BOCA.10° B.20° C.30

6.如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,下列結(jié)論中:①abc>0;②a+b+c>0;③方程aA.①② B.①③ C.①④ D.③④二、填空題(本大題共有6個(gè)小題,每小題3分,共18分)

一元二次方程x2=x的根

如圖,點(diǎn)A、B、C在⊙O上,∠ACB=43°,則∠AOB=________?

設(shè)x1、x2是一元二次方程x2-x-1=

將拋物線y=2(x-1)2+1先向右平移2

在《九章算術(shù)》中記載有一問題“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?”小輝同學(xué)根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道AB=1尺(1尺=10寸),則該圓材的直徑為________寸.

已知⊙O的直徑為4cm,A是圓上一固定點(diǎn),弦BC的長(zhǎng)為22cm(A、B、C三點(diǎn)均不重合),當(dāng)△三、解答題(本大題有5個(gè)小題,每小題6分,共30分)

(1)解方程:x2-6x(2)已知一條拋物線過點(diǎn)(1,?3),且頂點(diǎn)坐標(biāo)為(2,?1),求該拋物線解析式.

如圖,已知點(diǎn)A(2,?4),B(1,?1),C(3,?2).(1)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得△A1B1C1,畫出(2)畫出△ABC關(guān)于原點(diǎn)成中心對(duì)稱的圖形△A2B2C2

如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請(qǐng)僅用無刻度的直尺按要求畫圖.

1在圖1中,畫出△ABC2在圖2中,畫出△ABC中AB

已知關(guān)于x的方程x2-2x(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;(2)若方程有一個(gè)實(shí)數(shù)根是5,求此方程的另一個(gè)根.

如圖,在⊙O中的內(nèi)接四邊形ABCD中,AB=AD,E為弧AD上一點(diǎn).

(1)若∠C=110°,求∠BAD(2)若∠E=∠C,求證:四、解答題(本大題共有3個(gè)小題,每小題8分,共24分)

如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且AF=FC=CB,連接AC,AF,過點(diǎn)C作CD⊥AF交AF(1)求證:CD是⊙(2)若CD=23,求

現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,據(jù)調(diào)查,某家快遞公司,今年三月份與五月份完成投遞的快件總件數(shù)分別是5萬件和6.05萬件,現(xiàn)假定該公司每月投遞的快件總件數(shù)的增長(zhǎng)率相同.(1)求該公司投遞快件總件數(shù)的月平均增長(zhǎng)率;(2)如果平均每人每月可投遞快遞0.4萬件,那么該公司現(xiàn)有的16名快遞投遞員能否完成今年6月份的快遞投遞任務(wù)?

某公司生產(chǎn)某種商品每件成本為20元,這種商品在未來40天內(nèi)的日銷售量y(件)與時(shí)間x(天)的關(guān)系如下表:

時(shí)間x(天)1234…日銷售量y(件)94929088…

未來40天內(nèi),前20天每天的價(jià)格m(元/件)與時(shí)間x的函數(shù)關(guān)系式為,后20天每天的價(jià)格為30元/件(21≤x≤40).(1)分析上述表中的數(shù)據(jù),求出y(件)與x(天)之間的函數(shù)關(guān)系式;(2)當(dāng)1≤x≤20時(shí),設(shè)日利潤(rùn)為W元,求出W與(3)在未來40天中,哪一天的日利潤(rùn)最大?最大日利潤(rùn)是多少?五、解答題(本大題共有2個(gè)小題,每小題9分,共18分)

音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點(diǎn),出水口離岸邊18m,音樂變化時(shí),拋物線的頂點(diǎn)在直線y=kx上變動(dòng),從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為(1)若已知k=1,且噴出的拋物線水線最大高度達(dá)3m,求此時(shí)a、(2)若k=1,噴出的水恰好達(dá)到岸邊,則此時(shí)噴出的(3)若k=3,a=-2

【問題情境】

如圖1,點(diǎn)E為正方形ABCD內(nèi)一點(diǎn),∠AEB=90°,將Rt△ABE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°,得到△CBE'.延長(zhǎng)AE交CE'(1)試判斷四邊形BE(2)如圖2,若DA=DE,猜想線段CF與FE'的數(shù)量關(guān)系并加以證明;(3)如圖1若AB=15,CF=3,則DE的長(zhǎng)度為________.六、解答題(本大題共12分)

如圖,二次函數(shù)y=-13x2(1)求該二次函數(shù)的解析式;(2)在x軸上方作x軸的平行線y1=m,交二次函數(shù)圖象于A、B兩點(diǎn),過A、B兩點(diǎn)分別作x軸的垂線,垂足分別為點(diǎn)D、點(diǎn)C.當(dāng)矩形ABCD為正方形時(shí),求(3)在(2)的條件下,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿射線AB以每秒1個(gè)單位長(zhǎng)度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同的速度從點(diǎn)A出發(fā)沿線段AD勻速運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)立即原速返回,當(dāng)動(dòng)點(diǎn)Q返回到點(diǎn)A時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).過點(diǎn)P向x軸作垂線,交拋物線于點(diǎn)E,交直線AC于點(diǎn)F,問:以A、E、F、Q四點(diǎn)為頂點(diǎn)構(gòu)成的四邊形能否是平行四邊形.若能,請(qǐng)求出t的值;若不能,請(qǐng)說明理由.

參考答案與試題解析江西省某校九年級(jí)(上)期中數(shù)學(xué)試卷一、選擇題(本大題共有6個(gè)小題,每小題3分,共18分)1.【答案】D【考點(diǎn)】中心對(duì)稱圖形軸對(duì)稱圖形【解析】據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念判斷.【解答】A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;

B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;

C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;

D、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;2.【答案】A【考點(diǎn)】一元二次方程的定義【解析】依據(jù)一元二次方程的定義進(jìn)行判斷即可.【解答】A、是關(guān)于x的一元二次方程;

C、是關(guān)于x,故本選項(xiàng)不符合題意;

C、當(dāng)a=0時(shí)不是關(guān)于x的一元二次方程;

D、是關(guān)于x的分式方程;3.【答案】B【考點(diǎn)】二次函數(shù)的性質(zhì)【解析】直接利用頂點(diǎn)式的特點(diǎn)可求頂點(diǎn)坐標(biāo).【解答】∵y=(x+2)2-4.【答案】C【考點(diǎn)】命題與定理【解析】根據(jù)確定圓的條件、三角形外接圓、圓的有關(guān)概念判斷即可.【解答】①不在同一直線上的三點(diǎn)確定一個(gè)圓,原命題是假命題;

②圓中最長(zhǎng)弦是直徑,是真命題;

③在同圓或等圓中,長(zhǎng)度相等的弧是等??;

④三角形只有一個(gè)外接圓,是真命題;5.【答案】C【考點(diǎn)】旋轉(zhuǎn)的性質(zhì)【解析】根據(jù)∠BOC=∠BOD-∠【解答】由題意,∠AOC=∠BOD=70°,

∵∠COD=40°,

∴∠6.【答案】C【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系拋物線與x軸的交點(diǎn)根的判別式【解析】由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)各個(gè)結(jié)論進(jìn)行判斷.【解答】由拋物線的開口方向向上可推出a>0,

與y軸的交點(diǎn)為在y軸的負(fù)半軸上可推出c=-1<6,

對(duì)稱軸為x=->1>2,得b<0,

故abc>0,故①正確;

當(dāng)x=4時(shí),y<0,

所以a+b+c<0,故②錯(cuò)誤;

拋物線與y軸的交點(diǎn)為(4,?-1)2+bx+c圖象與直線y=-8有兩個(gè)交點(diǎn),

故ax2+bx+二、填空題(本大題共有6個(gè)小題,每小題3分,共18分)【答案】x1=0【考點(diǎn)】解一元二次方程-因式分解法【解析】先移項(xiàng),然后利用提取公因式法對(duì)等式的左邊進(jìn)行因式分解.【解答】解:由原方程得x2-x=0,

整理得x(x-1)=0,

則x=0或x-1=0,

【答案】86【考點(diǎn)】圓周角定理【解析】直接根據(jù)圓周角定理即可得出答案.【解答】∵∠ACB=43°,

∴∠AOB=2∠【答案】-【考點(diǎn)】根與系數(shù)的關(guān)系【解析】一元二次方程x2-3x-2=【解答】∵x1、x2是一元二次方程x2-x-1=【答案】y=2【考點(diǎn)】二次函數(shù)圖象與幾何變換【解析】按照“左加右減,上加下減”的規(guī)律即可求得.【解答】將拋物線y=2(x-1)3+1向右平移2個(gè)單位,再向上平移5個(gè)單位得到y(tǒng)=【答案】26【考點(diǎn)】垂徑定理的應(yīng)用勾股定理【解析】設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=【解答】解:如圖所示,作OD⊥AB,

設(shè)⊙O的半徑為r,

在Rt△ADO中,AD=5,OD=r-1,OA=r,

由勾股定理得:r2=52【答案】2+2或2,或【考點(diǎn)】垂徑定理等腰三角形的判定與性質(zhì)【解析】當(dāng)BC為底邊時(shí),如圖1,連接AO延長(zhǎng)與BC交于F,由全等三角形的判定定理得△ABO?△ACO,∠BAO=∠CAO,得△AFB?△ACF,由全等的性質(zhì)得,BF=CF,由垂徑定理得,AF⊥BC,AF為△ABC的高,利用勾股定理可得OF,可得AF的長(zhǎng);

當(dāng)BC為腰時(shí),如圖2,連接BO并延長(zhǎng)與AC交于F,由全等三角形的判定定理得△ABO?△CBO,∠ABO=∠CBO,得△AFB?△CBF,由全等的性質(zhì)得,AF=CF【解答】解:當(dāng)BC為底邊時(shí),如圖1,連接AO延長(zhǎng)與BC交于F,

在△ABO與△ACO中,

AB=ACBO=COAO=AO,

∴△ABO?△ACO(SSS),

∴∠BAO=∠CAO,

在△AFB與△ACF中,

AF=AF∠BAO=∠CAOAB=AC,

∴△AFB?△ACF(SAS),

∴BF=CF=2,

∴AF⊥BC,

∴AF為△ABC的高,

在直角△BOF中,

OF=BO2-BF2=2,

∴AF=2+2;

當(dāng)BC為腰時(shí),如圖2,連接BO并延長(zhǎng)與AC交于F

同理可證得:△ABO?△CBO,

∴∠ABO=∠CBO,

可得△AFB?△CBF,

∴AF=CF,

∴AF⊥AC,三、解答題(本大題有5個(gè)小題,每小題6分,共30分)【答案】x2-6x+6=0,

(x-2)(x-6)=0,

∴x-2=2或設(shè)拋物線解析式為y=a(x-2)2+4,

把(1,?3)代入得a?(8-2)2+2=【考點(diǎn)】解一元二次方程-因式分解法二次函數(shù)的性質(zhì)待定系數(shù)法求二次函數(shù)解析式二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征【解析】(1)利用因式分解法求解即可;

(2)由于已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)頂點(diǎn)式y(tǒng)=a(x-2)【解答】x2-6x+6=0,

(x-2)(x-6)=0,

∴x-2=2或設(shè)拋物線解析式為y=a(x-2)2+4,

把(1,?3)代入得a?(8-2)2+2=3【答案】(-2,?3)(-2,?-4)【考點(diǎn)】作圖-旋轉(zhuǎn)變換【解析】(1)根據(jù)旋轉(zhuǎn)的定義作出三個(gè)頂點(diǎn)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的對(duì)應(yīng)點(diǎn),再首尾順次連接即可;

(2【解答】如圖所示,△A1B1C2即為所求,點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為(-2,?8)如圖所示,△A3B2C2即為所求,點(diǎn)A的對(duì)稱點(diǎn)A3【答案】解:1如圖所示:點(diǎn)P就是三個(gè)高的交點(diǎn);

2如圖所示:CT就是AB上的高.

【考點(diǎn)】作圖—復(fù)雜作圖【解析】(1)根據(jù)圓周角定理:直徑所對(duì)的圓周角是90°(2)與(1)類似,利用圓周角定理畫圖.【解答】解:1如圖所示:點(diǎn)P就是三個(gè)高的交點(diǎn);

2如圖所示:CT就是AB上的高.

【答案】∵方程有兩個(gè)不相等的實(shí)數(shù)根,

△=(-2)2-2(m-1)>0,

設(shè)方程的另一個(gè)實(shí)數(shù)根為x2,

∵7+x2=2,

∴x4=-3.

【考點(diǎn)】根與系數(shù)的關(guān)系根的判別式【解析】(1)計(jì)算根的判別式,得到關(guān)于m的不等式,求解即可;

(2)根據(jù)根與系數(shù)的關(guān)系,利用兩根之和求出另一根.【解答】∵方程有兩個(gè)不相等的實(shí)數(shù)根,

△=(-2)2-2(m-1)>0,

設(shè)方程的另一個(gè)實(shí)數(shù)根為x2,

∵7+x2=2,

∴x4=-3.

【答案】∵四邊形ABCD內(nèi)接于⊙O,

∴∠BAD+∠C=180°,

∵∠C=110°,

∴∠BAD=70°,

∵AB=AD,

∴∠ABD=∠ADB=55°,

∵四邊形ABDE內(nèi)接于∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴∠BAD+∠C=180°,

∵四邊形ABDE是⊙O的內(nèi)接四邊形,

∴∠ABD+∠E=180°,

又∵∠E=∠C,

∴∠BAD=∠ABD,

∴AD=BD,

∵【考點(diǎn)】等邊三角形的判定圓內(nèi)接四邊形的性質(zhì)圓周角定理圓心角、弧、弦的關(guān)系【解析】(1)根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)可得出∠BAD,再由AB=AD,得出由圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可得出∠E的度數(shù).

(2)根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)的性質(zhì),可得出∠BAD=∠C,∠E=∠ABD,再由已知條件∠E=∠【解答】∵四邊形ABCD內(nèi)接于⊙O,

∴∠BAD+∠C=180°,

∵∠C=110°,

∴∠BAD=70°,

∵AB=AD,

∴∠ABD=∠ADB=55°,

∵四邊形ABDE內(nèi)接于∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴∠BAD+∠C=180°,

∵四邊形ABDE是⊙O的內(nèi)接四邊形,

∴∠ABD+∠E=180°,

又∵∠E=∠C,

∴∠BAD=∠ABD,

∴AD=BD,

∵四、解答題(本大題共有3個(gè)小題,每小題8分,共24分)【答案】(1)證明:連結(jié)OC,如圖,

∵FC=BC,

∴∠FAC=∠BAC.

∵OA=OC,

∴∠OAC=∠OCA,

∴∠FAC=∠OCA,

∴OC?(2)連結(jié)BC.

∵AB為直徑,

∴∠ACB=90°.

∵AF=FC=CB,

∴∠BOC=13×180°=60°,

∴∠BAC=30°,

∴∠DAC=30°,

在Rt【考點(diǎn)】圓周角定理切線的判定勾股定理【解析】(1)連結(jié)OC,由FC=BC,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC?//?(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由AF=FC=CB得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三邊的關(guān)系得AC=2CD=43,在Rt△【解答】(1)證明:連結(jié)OC,如圖,

∵FC=BC,

∴∠FAC=∠BAC.

∵OA=OC,

∴∠OAC=∠OCA,

∴∠FAC=∠OCA,

∴OC?(2)連結(jié)BC.

∵AB為直徑,

∴∠ACB=90°.

∵AF=FC=CB,

∴∠BOC=13×180°=60°,

∴∠BAC=30°,

∴∠DAC=30°,

在Rt【答案】設(shè)該公司投遞快件總件數(shù)的月平均增長(zhǎng)率為x,

根據(jù)題意得:5(1+x)5=6.05,

解得:x1=4.1=10%,x2=-6月份快遞總件數(shù)為:8.05×(1+10%)=6.655(萬件),

2.4×16=6.2(萬件),

∵6.4<8.655,

∴該公司現(xiàn)有的16名快遞投遞員不能完成今年6月份的快遞投遞任務(wù).【考點(diǎn)】一元二次方程的應(yīng)用【解析】(1)設(shè)該公司投遞快件總件數(shù)的月平均增長(zhǎng)率為x,根據(jù)該公司今年三月份與五月份完成投遞的快件總件數(shù),即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;

(2)根據(jù)6月份的快件總件數(shù)=5月份的快遞總件數(shù)×(1+增長(zhǎng)率),可求出6月份的快件總件數(shù),利用6月份可完成投遞快件總件數(shù)=每人每月可投遞快件件數(shù)×人數(shù)可求出6月份可完成投遞快件總件數(shù),二者比較后即可得出結(jié)論.【解答】設(shè)該公司投遞快件總件數(shù)的月平均增長(zhǎng)率為x,

根據(jù)題意得:5(1+x)5=6.05,

解得:x1=4.1=10%,x2=-4.16月份快遞總件數(shù)為:8.05×(1+10%)=6.655(萬件),

2.4×16=6.2(萬件),

∵6.4<8.655,

∴該公司現(xiàn)有的16名快遞投遞員不能完成今年6月份的快遞投遞任務(wù).【答案】設(shè)一次函數(shù)為y=kx+b,由題意

解得:,

∴y=-3x+96,

經(jīng)檢驗(yàn),其它點(diǎn)的坐標(biāo)均適合以上解析式,

∴所求函數(shù)解析式為y設(shè)前20天日銷售利潤(rùn)為W元:

W=(-2x+96)(x+25-20)

=-x∵1≤x≤20,前20天日銷售利潤(rùn)W,

∴當(dāng)x=14時(shí),W=-x2+14x+480=-(x-14)2+578,即二次函數(shù)有最大值578(元),

后20天日銷售利潤(rùn)為S元,

S=(30-20)(-3x+96)=-20x+960,

當(dāng)21≤x≤40時(shí),S隨x的增大而減?。究键c(diǎn)】二次函數(shù)的應(yīng)用【解析】(1)根據(jù)表格中的中的數(shù)據(jù)可以判斷出y與x的函數(shù)關(guān)系式,從而可以解答本題;

(2)根據(jù)銷量×每件利潤(rùn)=總利潤(rùn)進(jìn)而得出答案;

(3)根據(jù)題意可以分別求出前20天和后20天的最大利潤(rùn),然后比較即可解答本題.【解答】設(shè)一次函數(shù)為y=kx+b,由題意

,

解得:,

∴y=-3x+96,

經(jīng)檢驗(yàn),其它點(diǎn)的坐標(biāo)均適合以上解析式,

∴所求函數(shù)解析式為y設(shè)前20天日銷售利潤(rùn)為W元:

W=(-2x+96)(x+25-20)

=-x∵1≤x≤20,前20天日銷售利潤(rùn)W,

∴當(dāng)x=14時(shí),W=-x2+14x+480=-(x-14)2+578,即二次函數(shù)有最大值578(元),

后20天日銷售利潤(rùn)為S元,

S=(30-20)(-3x+96)=-20x+960,

當(dāng)21≤x≤40時(shí),S隨x的增大而減?。?、解答題(本大題共有2個(gè)小題,每小題9分,共18分)【答案】解:(1)∵y=ax2+bx的頂點(diǎn)為(-b2a,-b24a),拋物線的頂點(diǎn)在直線y=kx上,k=1,拋物線水線最大高度達(dá)3m,

∴-b(2)∵k=1,噴出的水恰好達(dá)到岸邊,出水口離岸邊18m,拋物線的頂點(diǎn)在直線y=kx上,

∴此時(shí)拋物線的對(duì)稱軸為x=9,y(3)∵y=ax2+bx的頂點(diǎn)為(-b2a,-b24a)在直線y=3x上,a=-27,

∴-b2a×3=-b24a,

解得,b=6,【考點(diǎn)】二次函數(shù)的應(yīng)用【解析】(1)根據(jù)拋物線的頂點(diǎn)在直線y=kx上,拋物線為y=ax2+bx,(2)根據(jù)k=1,噴出的水恰好達(dá)到岸邊,拋物線的頂點(diǎn)在直線y=kx(3)根據(jù)k=3,a=-27,拋物線的頂點(diǎn)在直線y=kx上,拋物線為y=ax【解答】解:(1)∵y=ax2+bx的頂點(diǎn)為(-b2a,-b24a),拋物線的頂點(diǎn)在直線y=kx上,k=1,拋物線水線最大高度達(dá)3m,

∴-b(2)∵k=1,噴出的水恰好達(dá)到岸邊,出水口離岸邊18m,拋物線的頂點(diǎn)在直線y=kx上,

∴此時(shí)拋物線的對(duì)稱軸為x=9,y(3)∵y=ax2+bx的頂點(diǎn)為(-b2a,-b24a)在直線y=3x上,a=-27,

∴-b2a×3=-b24a,

解得,b=6,

∴【答案】四邊形BE'FE是正方形,

理由如下:

∵將Rt△ABE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°,

∴∠AEB=∠CE'B=90°,BE=BE',

又∵∠BEF=90°CF=E'F;

理由如下:如圖2,過點(diǎn)D作DH⊥AE于H,

∵DA=DE,DH⊥AE,

∴AH=AE,

∴∠ADH+∠DAH=90°,

∵四邊形ABCD是正方形,

∴AD=AB,∠DAB=90°,

∴∠DAH+∠EAB=90°,

∴∠ADH=∠EAB,

又∵AD=AB,∠AHD=∠AEB=90°,

∴△ADH?△BAE(AAS),

∴AH=BE=AE,

∵將Rt△ABE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)903【考點(diǎn)】四邊形綜合題【解析】(1)由旋轉(zhuǎn)的性質(zhì)可得∠AEB=∠CE'B=90°,BE=BE',∠EBE'=90°,由正方形的判定可證四邊形BE'FE是正方形;

(2)過點(diǎn)D作DH⊥AE于H,由等腰三角形的性質(zhì)可得AH=AE,DH⊥AE,由“AAS”可得△ADH?△BAE,可得AH=【解答】四邊形BE'FE是正方形,

理由如下:

∵將Rt△ABE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°,

∴∠AEB=∠CE'B=90°,BE=BE',

又∵∠BEF=90°CF=E'F;

理由如下:如圖2,過點(diǎn)D作DH⊥AE于H,

∵DA=DE,DH⊥AE,

∴AH=AE,

∴∠ADH+∠DAH=90°,

∵四邊形ABCD是正方形,

∴AD=AB,∠DAB=90°,

∴∠DAH+∠EAB=90°,

∴∠ADH=∠EAB,

又∵AD=AB,∠AHD=∠AEB=90°,

∴△ADH?△BAE(AAS),

∴AH=BE=AE,

∵將Rt△ABE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90如圖1,過點(diǎn)D作DH⊥AE于H,

∵四邊形BE'FE是正方形,

∴BE'=E'F=BE,

∵AB=BC=15,CF=72=E'B2+E'C3,

∴225=E'B2+(E'B+3)6,

∴E'B=9=BE,

∴CE'=CF+E'F=12,

由(2六、解答題(本大題共12分)【答案】解:(1)將(0,?0),(8,?0)代入y=-13x2+bx+c(2)當(dāng)y=m時(shí),-13x2+83x=m,

解得:x1=4-16-3m,x2=4+16-3m,

∴點(diǎn)A的坐標(biāo)為(4-16-3m,?m),點(diǎn)B的坐標(biāo)為(4+16-3m,?m),

∴(3)以A、E、F、Q四點(diǎn)為頂點(diǎn)構(gòu)成的四邊形能為平行四邊形.

由(2)可知:點(diǎn)A的坐標(biāo)為(2,?4),點(diǎn)B的坐標(biāo)為(6,?4),點(diǎn)C的坐標(biāo)為(6,?0),點(diǎn)D的坐標(biāo)為(2,?0).

設(shè)直線AC的解析式為y=kx+a(k≠0),

將A(2,?4)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論