版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
QuantumMechanicsChapter6.Spin§6.1TheSpinOperatorsFollowingthemethodofSection2.3,werepresenttheeigenstatesofthespinoperatorastwo-dimensionalvectors.Inthecaseofelectronspin,thereareonlytwoeigenfunctionsinsteadofthreeormore.TheHilbertspinspaceisthereforetwo-dimensional
andwecanwritetheeigenfunctionsascolumnvectorsjustaswedidfororbitalangularmomentum;theunitvectorsthatareeigenfunctionsofSzarethetwo-componentvectors
ComparewithEq.(7.18)forthethreeeigenstatesofLzwithl=1.Followingthereasoninggiventhere,wesaythatanyelectron-spinfunctionFscanbearepresentedbyasuperpositionof│+>zand│->z:
Continuingthislineofreasoning,wecanrepresentthespinoperatorsSx,Sy,andSzasthefollowing2×2matricesthatoperateonthesevectors:Thesemaybewrittenwherethedimensionlessoperatorsσx,σy,andσz(thePaulispinmatrices)areexpressedbythematricesinEq.(10.3).ThesematricescanbederivedbyusingrulesanalogoustothoseofEqs.(7.17):Itisleftasanexercisetoverifythattheseequationsareindeedsatisfiedbythematricesgiven.Youcanalsoverifytheanticommutationrelationσxσy+σyσx=0,andthecorrespondingrelationsinvolvingσz.ExampleProblem10.1FindvaluesoftheconstantsaandbthatyieldnormalizedeigenfunctionsofSx,byapplyingthisoperatortothegeneralexpressionforaspinstate:a│+>z+b│->z.
Solution.WeknowthattheeigenvaluesofSx,mustbethesameasthoseofSz.ThestatementthatisaneigenfunctionofSxwitheigenvalueisexpressedbythenotationSubstitutingthematrixforSxandperformingtheindicatedmatrixoperation.wehaveThereforeorb=a.Normalizationrequiresthatsothata=b=l/(2)1/2.Similarly,ifisaneigenfunctionwiththeeigenvalue-?/2,thenInthiscaseorb=-a=-1/(2)1/2.Inconclusion,theeigenvectorsareandrespectively.§6.2FineStructureinTheHydrogenSpectrumEffectofSpinonEnergyLevelsTheintrinsicmagneticmomentoftheelectron,whichresultsfromitsspin,leadstoasplittingoftheenergylevelsofhydrogenintosublevels,providedthatthereisamagneticfieldintheatom,becauseineachofthestatesdeterminedbytheSchreodingerequationtheelectronwouldthenhavetwopossibleva1uesforitsmagneticpotentialenergy,accordingtothevalueofthezcomponentofitsmagneticmoment.Butwhyshouldtherebeamagneticfieldinthehydrogenatom?Theonlyotherparticlepresentistheproton.Onemightexpecttheproton,liketheelectrontohaveinternalspinandmagneticmoment,anditdoes,butitturnsoutthattheproton'sintrinsicmagneticmomentproducesafieldwhichistoosmalltoaccountfortheobservedfinestructureinthehydrogenspectrum.(Theproton'smagneticmomentleadstohyperfinestructure,tobediscussedlaterinthissection.)However,theproton'selectricchargeleadstotheexistenceofamagneticfieldofsufficientstrength,becauseintheelectron'srestframetheprotonmovesinanorbitaroundtheelectron.Toputinanotherway,abodymovingthroughanelectricfieldalso“sees”amagneticfield,accordingtothetheoryofrelativity.EnergyoftheSpin-OrbitInteraction
Letususetheprecedingideatoestimatethemagnitudeofthesplittingofthehydrogenlevels.Firstwemustknowthemagneticmomentoftheelectron,whichmaybededucedfromthemagnitudeofthesplittingoftheatomicbeamintheStern-Gerlachexperiment.Thismomentisveryclosetoμ=-(e/me)S.(orμ=-(e/mec)Sincgsunits) (10.6)whereSisthespinangularmomentumoftheelectron,andeisthemagnitudeoftheelectroniccharge.SinceSz=±?/2,thezcomponentofμis(inmksunits)μz=±e?/2me=±1Bohrmagneton
[TheBohrmagnetonisoftendenotedbythesymbolμbandsimplycalledthemagneticmomentoftheelectron.Strictlyspeaking,μbisnottheelectron'smagneticmoment;itisonlyonecomponentofthatmoment.However,onecomponentisallthatisobservedinanexperimentalmeasurementofthemagneticmomentoftheelectron.]Todeterminetheenergyattributabletotheexistenceoftheelectron'smagneticmoment,wewritetheenergyofamagneticmomentμinamagneticfieldBasW=-μ?B,andfromEq.(10.6)wehaveW=-(e/me)S?B(10.7)Bmayberelatedtotheelectron'sorbitalangularmomentuminthefollowingway:Ifthevelocityoftheelectronisv,thevelocityoftheprotonrelativetotheelectronis-v.ThemagneticfieldBproducedbytheproton'schargeeistherefore
Thismaybewrittenintermsoftheelectron'sangularmomentumL=r×mvasTheinteractionenergyisthen,intheelectron'srestframeExpression(10.10)isnotthecorrectonetouseforW,however,becausetheenergysplittingseeninthelabisnotthesameasthatseenintheelectron'srestframe.Thereasonforthisisrathercomplicated,involvingaphenomenonknownastheThomasprecession,
whichisrelatedtothefactthatthetimescaleisnotthesameinthelaboratoryasintherestframe,oftheelectron.Theproperrelativistictreatmentshowsthattheenergyshiftseeninthelaboratoryisjustone-halfofthevaluegiveninEq.(10.10),orWecannowestimatethevalueofW.Weset∣L∣≌?.ForS,weknowthatthecomponentinanydirection,suchasthedirectionofLmustbe?/2inmagnitude.Ifwethenletr≌a0,wefindWtobeoftheorderof10-4
eV,whichisoftheorderofmagnituderequiredbytheobservedfinestructure.WeshallseeinChapter8thateffectsofthissizemaybecalculatedbythemethodsofperturbationtheory.ItshouldcomeasnosurprisetofindthatasafirstapproximationthisenergycanbeassumedtobetheexpectationvalueofS·L,computingthisvaluebyusingtheeigenfunctionsalreadyfoundforthehydrogenatom;thatiswhereuisaneigenfunctionofEq.(9.10).Weshouldthereforebeabletoexpressthisenergyintermsofthequantumnumbersn,l,andmfortheseeigenfunctions,ifwecanevaluatetheS·Loperator;thatis,weneedtoknowtheresultoftheoperation(S·L)opu.CombiningSpinandOrbitalAngularMomentumTheS·LoperatorcanbeincludedintheoperatorforthetotalenergyasitappearsintheSchreodingerequation.TheenergyisthenfoundbyfindingtheeigenvaluesoftheSchreodingerequationinthisform,withthevariablesSandLrepresentedasoperators.Thuswherethefunctionislabeledustoshowthatitisafunctionofthespincoordinateaswellasthethreespacecoordinates,becauseS·Lmustoperateonit.Wemayaccountforthisspindependencebyassumingthatusissomesuperpositionoftwowavefunctionsψ1andψ2thatdifferinthevalueofthespincoordinate,asfollows:ψ1=e-iωtu1(x,y,z)∣+>s(10.14a)ψ2=e-iωtu1(x,y,z)∣->s(10.14b)wherethestatevectors∣+>sand∣->sarethetwoeigenfunctionsintroducedinEqs.(10.1).TherewesawthatthespinoperatorSzoperatesonthesefunctionstoyieldthetwopossibleeigenvaluesofSz:NowwemustexaminetheeffectofallthreecomponentsofS,astheyappearintheS?Loperator.Toproceed,wemustintroducethetotalangularmomentumvectorJ=L+S.Becausetherearenoexternaltorquesonthesystemthetotalangularmomentumisconstantduringthemotion,butneitherLnorSisnecessarilyconstant.TheBfieldcausedbytheelectron'sorbitalmotionexertsatorqueonthespinmagneticmoment;whenthismagneticmomentchangesdirection,Lmustalsochangedirection,inorderthatL+Sremainconstant.Inquantummechanicalterms,thismeansthatthewavefunctioncannotbeeitherofthefunctionsofEqs.(10.14),whichhavefixedvaluesofS.Rather,thewavefunctionmustbeasuperpositionofthesetwofunctions.ThevectorS,ofcourse,remainsconstantinmagnitude,becausethisisafundamentalpropertyoftheelectron,butthedirectionofSisnotdetermined.HavingintroducedJ,wenowcanexpressS?LintermsofJ,L,andS,usingtheequation
J2≡J·J=(L+S)·(L+S)=S2+L2+(S·L)+(L·S)(10.16)ButtheLoperatormustcommutewiththeSoperator,becauseLopandSopoperateondifferentcoordinates.Therefore(S·L)=(L·S),andwecansolveforS·L,obtaining
S·L=(J2
–S2
–L2)/2 (10.17)Theproblemofevaluating(S·L)isnowreducedtoevaluating(J2
–S2
–L2).Wehavealreadyfound[Eq.(6.58)]thattheeigenvaluesofL2canbewrittenintheform
L2=l(l+1)?2 (10.18)
wherelisdefinedasthemaximumvalueofm,orofLz/?(Section2.3).ByanalogwemightsuspectthatwecouldalsowriteS2=s(s+1)?2(10.19)andJ2=j(j+l)?2(10.20)wheresisdefinedasthemaximumvalueofSz/?andjisdefinedasthemaximumvalueofJz/?.BecauseSz=±?/2,thevalueofsmustbel/2.ThisleadstoavalueforS2thatisconsistentwithwhatweknowaboutorbitalangularmomentum:
Fromtheisotropyofspace,Sx2=Sy2=Sz2=?2/4,andbydefinition,S2=Sx2+Sy2+Sz2=3?2/4(10.21)thesameresultthatwefindfromEq.(10.19).NoticethesimilarityofthisdiscussiontotheonethatledtoEq.(6.58).TheonlydifferenceisthatEq.(6.58)involvedexpectationvalues(e.g.,<Lx2>).Inthecaseofspin,Sx2hasonlyonepossiblevalue:<Sx2>=Sx2inallcases.§6.3SteppingOperatorsandEigenvaluesofJ2
TheeigenvaluesofJ2followasimilarpattern;weonlyhavetodeterminethemaximumvalueofJz.WeknowthatJz=Lz+SzandthatSz=±?/2.ThusitwouldseemclearthatthemaximumvalueofJzmustequalthemaximumvalueofLzplusthemaximumvalueofSz.Apparently,therefore,j=(l?+?/2)/?=l+1/2,bydefinition.Thisisapossiblevalueforj,butthereismoretoit.
ThevalueofjisrelatedtotheeigenvalueofJ2.whichinturnisrelatedtothevalueofL·S.Foragivenvalueofl,theremustbetwopossiblevaluesofL·S,becausethespinvectoralwayshastwopossibledirectionsrelativetoanyotherdirection(includingthedirectionoftheLvector).OneofthesedirectionsyieldsapositivevalueforL·S,theotheranegativevalueofequalmagnitude.Thistellsusthattheremustbetwopossiblevaluesofj.SteppingOperatorsforAngularMomentumSates
Toputthediscussiononafirmerbasis,wenowgeneratetheeigenvaluesofJ2byusingthestepping-operatormethodthatwasintroducedin
Section4.2forharmonic-oscillatoreigenfunctions.Indoingthis,itisconvenienttointroducethesymbol[Lx,Ly]torepresenttheso-calledcommutatorofLxandLy:theoperatorLxLy
–
LyLx.Itiseasytoshow(Exercise6,Chapter6)thatthethreeoperatorsofthistypeobeythecommutationrelations[Lx,Ly]=ihLz,[Ly,Lz]=ihLx,[Lz,Lx]=ihLy
(10.22)Eachrelationcanbegeneratedfromthepreviousonebythereplacementofxbyy,ybyz,andzbyx.WecannowderivetheeigenvaluesofJ2bymakingtworeasonableassumptions:1.Similarcommutationrelationsapplytoallformsofangularmomentum,sothat[Sx,Sy]=i?Sz,[Jx,Jy]=i?Jz,andsoon.2.WecanfindafunctionthatisaneigenfunctionofbothJ2andJz,withtheeigenvaluea?2forJ2andeigenvalueb?forJz,whereaandbaredimensionless.Denotingthisfunctionbythesymboluab,wewriteJ2uab=a?2uab(10.23)
Jzuab=b?uab
(10.24)LetusnowintroducetheoperatorJ+=Jx+iJyanddemonstratethatthefunctionJ+uabisalsoaneigenfunctionofJz.ApplyingJztoJ+uabgivesus
JzJ+uab=Jz(Jx+iJy)uab=(JzJx+iJzJy)uab
(10.25)WecanapplyJzdirectlytouabbyusingthecommutationrelationsintheform
JzJx=JxJz+i?Jy
andJzJy=JyJz-i?Jx
(10.26)SubstitutingfromEq.(10.26)intoEq.(10.25)produces
JzJ+uab=(JxJz+i?Jy+iJyJz+?Jx)uabv
(10.27)ThesubstitutionofJzuab=b?uab
fromEq.(10.24)nowyields
JzJ+uab=(Jxb?+i?Jy+iJyb?+?Jx)uab
(10.28)whichreducesto
JzJ+uab=(Jx+iJy)(b?+?)uab=(b+1)?J+uab
(10.29)ThuswehaveproventhatthefunctionJ+uabisaneigenfunctionofJz,witheigenvalue(b+l)?.Followingthesameprocedure,wecouldprovethatJ-uab,whereJ-=Jx
–
Jy,isaneigenfunctionofJzwitheigenvalue(b-l)?.Thereforewecangeneratefromuabasetofeigenfunctionswhoseeigenvaluesare?multipliedbyb,b±1,b±2,……EachofthesefunctionsisalsoaneigenfunctionofJ2,asyoumayveritybyapplyingtheJ2operatortothefunctionJ+uab,thenapplyingthecommutationrelationsandEqs.(10.23)and(10.24).
Thissetofeigenfunctionscannotbeinfinite,becauseweknowthatnoeigenvalueofJz2canbegreaterthantheeigenvalueofJ2,whichequalsa?2foreveryeigenfunctionintheset.ThustheremustbealargesteigenvalueofJz,whichwedenoteasj?.Wewritetheeigenfunctioncorrespondingtothiseigenvalueasuaj;thatmeansthatJzuaj=j?uaj.ItisclearthatJ+uaj=0 (10.30)forotherwiseJ+uajwouldbeaneigenfunctionofJzwitheigenvalue(j+1)?,incontradictiontothedefinitionofj?asthelargesteigenvalue.
Letusnowapplytheoperator(Jx-iJy)tothisfunctiontoobtain(Jx-iJy)(Jx+iJy)uaj=0(10.31)or[Jx2+Jy2+i(JxJy
–
JyJx)]uaj=0(10.32)ThecommutationruleforJxandJyshowsthatthiscanbewrittenas(Jx2+Jy2-?Jz)uaj=0(10.33)or,sinceJzuaj=j?uaj
(Jx2+Jy2-j?2)Uaj=0(10.34)Adding(Jz2+j?2)uajtobothsides,wehave(Jx2+Jy2+Jz2)uaj=(Jz2+j?2)uaj
(10.35)whichreducesto J2uaj=j(j+1)?2uaj (10.36)Insummary,wehaveshowndirectlyfromtheassumedcommutationrelationsthattheeigenvaluesofJ2arej(j+1)?2andthatthestateswithagivenvalueofjformasetforwhichtheeigenvalueofJzisoneofthesequence+j?,+(j-1)?,...,-j?.ThuswemaywriteJz=mj?,wheremjhasamaximumvalueofjandaminimumvalueof-j.Sincethedifferencebetweenanytwovaluesofmjmustbeanintegerandthedifferencebetweenjand-jis2j,thevalueofjmustbeeitheranintegerorahalf-integer.
Thisderivationisbasedsolelyuponthecommutationrelations;nothinginthederivationdependsuponthenatureoftheparticleinvolved.Forasingleelectron,thefactthats=1/2makesjahalf-integer;foraparticlewhosespinisaninteger,jwouldalsobeaninteger.Nowwemustdeterminethegeneralrelationbetweenthevalueofjandthevalueofs.WedothisbyreferringtothezcomponentsofthevectorsJ,L,andS.SinceJ=L+SweknowthatJz=Lz+Sz.Theeigenvaluerelationismj?=ml?+ms?,sothatmj=ml+ms,or
mj=ml±1/2(10.37)Themaximumvalueofmjisj.so
mj≤l+1/2 (10.38)andtheremustbeasetofstatesforwhichmjtakesonthevalues
mj
=l+1/2,l–1/2,l-3/2,...,-(l+1/2)(j=l+?) (10.39)andforeverystateinthissetthevalueofjisl+1/2,ThismeansthatthemagnitudeofJisgreaterthanthemagnitudeofLforeachofthesestates,andwededucethatS·Lispositiveforeachofthesestates.TheremustalsobestatesforwhichS·Lisnegative;theseformasetforwhichjequalsl–1/2,andinthisset
mj
=l–1/2,l–3/2,...,-(l–1/2)(j=l–1/2) (10.40)Inbothofthesesetswefindvaluesofmjintherangel–1/2≥mj≥-(l–1/2).Thusthereisonlyonestateforwhichmj=l+1/2,onlyonestateforwhichmj=-(l+?),andtwostatesforeachoftheotherpossiblevaluesofmj.Letusnowexamineindetailthedistinctionbetweentwostateswithdifferentjandthesamemj.Considerthecasemj=l–1/2.Thisvalueofmjcanbeproducedintwoways;eitherml=l-1andthespinispositive,orml=landthespinisnegative.InDiracnotation(aspresentedinSection2.4)wewouldwritethesestatesas∣l,l–1>∣+>sand∣l,l>∣->s,respectively.Thesetwostatesareofcourseorthogonaltoeachother.NeitherofthemisaneigenstateoftheJ2operator,butwecanformtwolinearcombinationsofthem,suchthatonecombinationisaneigenstateoftheJ2witheigenvaluej=l+1/2,andtheothercombinationisaneigenstateoftheJ2witheigenvaluej=l–1/2.Asillustratedinthefollowingexample,S·Lispositivewhenj=l+1/2,andS·Lisnegativewhenj=l–1/2.
ExampleProblem10.2FindtheeigenvalueofJ2foreachofthetwoindependentlinearcombinationsof∣1,0>∣+>sand∣1,1>∣->sthatareeigenfunctionsofJ2.Solution.ApplyingtheS·LoperatortothegeneralexpressionF=a∣1,0>∣+>s+b∣1,1>∣->sgivesustheexpression∣SxLx+SyLy+SzLz[a∣1,0>∣+>s+b∣1,1>∣->s].Usingthespinoperators[Eqs.(10.3)]combinedwiththeoperatorsforthecomponentsofL[Eqs.(7.19)]wefindthattheindividualtermsare
SxLx[a∣1,0>∣+>s+b∣1,1>∣->s]=?2/2(2)1/2[a∣1,1>∣->s+a∣1,-1>∣->s
+b∣1,0>∣+>s]
SyLy[a∣1,0>∣+>s+b∣1,1>∣->s]=?2/2(2)1/2[a∣1,1>∣->s-a∣1,-1>∣->s
+b∣1,0>∣+>s]
SzLz[a∣1,0>∣+>s+b∣1,1>∣->s=?2/2[-b∣1,1>∣->s]Thisbecomes,afteraddingandgroupingterms:S·LF=?2/(2)1/2[a∣1,1>∣->s+b∣1,0>∣+>s] –?2/2[b∣1,1>∣->s]=A?2[a∣1,0>∣+>s+b∣1,1>∣->s]whereAh2istheassumedeigenvalue,Abeingadimensionlessnumber.Equatingcorrespondingcoefficientswehavea/(2)1/2
–b/2=Abandb/(2)1/2=Aa(10.41)WecansolvethesetofindtworootsforA:A=+1/2orA=-l.ThereforetheeigenvaluesofS·Lare+?2/2and-?2.SinceL2=2?2andS2=3?2/4,J2=L2+S2+2S·L=15?2/4(whenS·L=+?2/2),andJ2=3?2/4(whenS·L=-?2).
NoticethatthesevaluesagreewiththeformulaJ2=j(j+1)?2withj=3/2inthefirstcaseandj=l/2inthesecondcase.Tosummarize:1.Therearetwosetsofstatesforagivenvalueofl,whens=1/2;thesehavethevaluesofmlgiveninEqs.(10.39)and(10.40).2.Therearetwoindependentstatesforeachvalueofmjfrommj=l-(l/2)downtomj=-[l-(l/2)].3.IfoneofthesestatesisaneigenstateofJ2,thatstateisnotaneigenstateofeitherLzorSz,butitisalinearcombinationofthetwoeigenstates∣l,ml>∣->sand∣l,ml
–1>∣+>s(asillustratedintheprecedingexample).4.Ingeneral.thequantitiesLz,Sz,andJ2arenotsimultaneouslyobservable,becausetheJ2operatordoesnotcommutewiththeLzandSzoperators.
FIGURE10.l(a)StateinwhichLzandSzareknownJ2isunknown.becausethedirectionofLrelativetoSisunknown.(b)StateinwhichJ2isknown.thevaluesofLzandSzarenotknown.becauseSandLrotatearoundJ.
Figure10.1illustratesthispoint,Figure10.1ashowsthecaseinwhichL2,Lz,S2,andSzareallknown.EachofthevectorsSandLliesonacone(whoseaxisisthezaxis,butthepositionofthevectoronitsconeiscompletelyundetermined.ThereforethedirectionofSrelativetoLisunknown,S·Lisunknown,andJ2mustbeunknown.Incontrast,Figure10.1bshowsthesituationinwhichJ2,L2,S2,andJzareknown.InthiscaseS·Lmustbeknown;thusweknowthattheanglebetweenSandLmustbefixed,makingSlieonaconewhoseaxisisthedirectionofL.ObservethatthetriangleformedbyS,L,andJiscompletelydeterminedinsizeandshape,butthistrianglerotatesaboutthedirectionofJ.ThusLzandSzareundetermined,butJ2andJzareknown.EvaluationoftheSpin-OrbitEnergyWenowhavethenecessaryinformationtoevaluatethespin-orbitenergy.LetusgeneralizeEq.(10.12)tothecaseofanuclearchargeofZeinaone-electronion.ThenwehaveUsingEq.(1.17)fortheoperator,wehaveIfuisaneigenfunctionofJ2,S2,andL2,wemaywrite(J2-S2-L2)opu=?2[j(j+1)-l(l+l)-s(s+1)]u (10.44)Andaftersettingsequalto1/2,wehaveTheangularpartofthisintegralisequaltol,becauseofthenormalizationofthesphericalharmonics.Itisasimplemattertoevaluatetheradialpartforanyparticularstate,bypluggingintheappropriateradialfunction(seeTable9.1orAppendixG).Evaluatingtheintegralforthegeneralcaseismoredifficult;theresult(forl≠0)iswherea’0isdefinedasa’0=a0(me+M)/M.ItisinstructivetowriteWintermsoftheenergyoftheunperturbedstate[En=-mrc2Z2α2/2n2,whereα=e2/4πε0hc≌1/137(thefinestructureconstant)]:Sincejequalseitherl+1/2orl-1/2,wecanwritethisastwoexpressions:Thus∣W∣isproportionalto∣En∣α2,while∣En∣itselfisproportionaltomc2α2.Thuswecouldsaythatwehavethefirstthreetermsinanexpansionofthetotalenergyinapowerseriesinα2.However,thereisanothereffect,arelativisticcontributiontotheenergy,thatiscomparabletotheeffectjustcomputed.Thiseffectisaconsequenceofthefactthatthekineticenergyofaparticleofmassmandmomentumpisnotaccuratelygivenbytheexpressionp2/2m,ashadbeenassumedinconstructingtheSchreodingerequation.Withbotheffectsincluded,theenergyshiftΔEisgivenbyasingleformulaNoticethatthetotalenergydependsonnandjonly,andnotonl.(ThecalculationinvolvesanapproximationthatwewilldiscussinChapter7.)Forthisreason,thelabelingofstatesincludesasubscriptgivingthevalueofj.Forexample,2s1/2isthestatewithn=2,l=0,andj=1/2,and2p1/2isthestatewithn=2,l=1,andj=1/2.HyperfineStructure
Theprotonandneutronalsohaveintrinsicspinandmagneticmoment.Theseareobservablebecauseoftheenergyshiftresultingfromtheinteractionofthismagneticmomentandtheorbitalandspinmagnetic
momentsoftheelectron.Althoughtheenergyinvolvedistiny,comparedtotheS·Leffect,ithasclearlybeenobserved.Themagnitudeofthis“hyperfine”energysplittingcanbeestimatedtheoreticallybyanextensionofthemethodsusedabove.Ingeneral,anatomhasatotalangularmomentumthatcanbedefinedasthevectorF=J+I,whereIistheinternalangularmomentumofthenucleus(analogoustoSfortheelectron).Inthe
1Hatom,Iissimplythespinangularmomentumoftheproton,whichisequaltothespinangularmomentumoftheelectron,withtwopossiblevalues,±?/2,ofthecomponentalonganyspecifieddirec
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年遼控集團所屬國合集團招聘備考題庫有答案詳解
- 2025年通信網絡工程建設管理規(guī)范
- 高中生物《激素調節(jié)》教學設計
- 2025年高速鐵路運營安全管理指南
- 心理健康《疫情背景下青少年心理調適與素養(yǎng)提升》教學設計(八年級)
- 2025年醫(yī)療機構傳染病防治與控制指南
- 大班科學《小動物之間的聯(lián)絡》教學設計
- 海底觀測網接駁盒電力與數據傳輸管理標準
- 初中生物光合作用暗反應階段影響因素實驗課題報告教學研究課題報告
- 城市景觀照明燈具防盜系統(tǒng)測試記錄保存管理細則
- 2026年內蒙古白音華鋁電有限公司招聘備考題庫帶答案詳解
- 2025年玉溪市市直事業(yè)單位選調工作人員考試筆試試題(含答案)
- 2026年涉縣輔警招聘考試備考題庫附答案
- 2026湖南株洲市蘆淞區(qū)人民政府征兵辦公室兵役登記參考考試題庫及答案解析
- 2026年高考語文備考之18道病句修改專練含答案
- 私域流量課件
- 2025年杭州余杭水務有限公司招聘36人筆試備考試題及答案解析
- GB/T 7251.5-2025低壓成套開關設備和控制設備第5部分:公用電網電力配電成套設備
- 江蘇省2025年普通高中學業(yè)水平合格性考試英語試卷(含答案)
- 機器人手術術后引流管管理的最佳實踐方案
- 枕骨骨折的護理課件
評論
0/150
提交評論