【復(fù)習(xí)課件】第二章整式的加減復(fù)習(xí)課_第1頁
【復(fù)習(xí)課件】第二章整式的加減復(fù)習(xí)課_第2頁
【復(fù)習(xí)課件】第二章整式的加減復(fù)習(xí)課_第3頁
【復(fù)習(xí)課件】第二章整式的加減復(fù)習(xí)課_第4頁
【復(fù)習(xí)課件】第二章整式的加減復(fù)習(xí)課_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第二章整式的加減復(fù)習(xí)第二章整式的加減復(fù)習(xí)1用字母表示數(shù)列式表示數(shù)量關(guān)系單項式多項式整式整式加減合并同類項去括號本章知識結(jié)構(gòu)圖:1.列整式能力2.整式的加減計算能力3.培養(yǎng)符號感4.注重數(shù)學(xué)思想整體代換思想從特殊到一般,再到特殊的思想用字母表示數(shù)列式表示數(shù)量關(guān)系單項式多項式整式整式加減合并同類2知識回顧整式的加減用字母表示數(shù)單項式:多項式:去括號:同類項:合并同類項:整式的加減:系數(shù)、次數(shù)項、次數(shù)、常數(shù)項定義、“兩相同、兩無關(guān)”定義、法則、步驟法則整式練習(xí)(一)練習(xí)(二)練習(xí)(三)步驟知識回顧整式的加減3次數(shù):所有字母的指數(shù)的和。系數(shù):單項式中的數(shù)字因數(shù)。項:式中的每個單項式叫多項式的項。(其中不含字母的項叫做常數(shù)項)次數(shù):多項式中次數(shù)最高的項的次數(shù)。整式注意:1、多項式的次數(shù)為最高次項的次數(shù).2、多項式的每一項都包括它前面的符號.回顧1:單獨的一個數(shù)字或字母也是單項式.次數(shù):所有字母的指數(shù)的和。系數(shù):單項式中的數(shù)字因數(shù)。項:式中4(1)圓周率是常數(shù)。(2)如果單項式是單獨的字母,那么它的系數(shù)是1。如:單項式c的系數(shù)是1。(3)當(dāng)一個單項式的系數(shù)是1或–1時,“1”通常省略不寫,但不要誤認(rèn)為是0,如a2,–abc;(4)單項式的系數(shù)是帶分?jǐn)?shù)時,還常寫成假分?jǐn)?shù),如寫成。(5)單獨的數(shù)字不含字母,所以它的次數(shù)是零次.注意:(1)圓周率是常數(shù)。(2)如果單項式是單獨的字母,那么它的5代數(shù)式的書寫要求1、乘號盡量省略;如:2a,2(m+n)2、數(shù)字在前,字母在后;如2(m+n)不要寫成(m+n)23、數(shù)數(shù)相乘,乘號不變;如“3×7xy”不能寫成“3·7xy”,更不能寫成37xy,而要直接寫成21xy代數(shù)式的書寫要求1、乘號盡量省略;64、除法變分?jǐn)?shù)如:梯形面積表示成(a+b)h,而不要寫成(a+b)h÷25、小數(shù)變分?jǐn)?shù)、帶分?jǐn)?shù)變假分?jǐn)?shù)6、帶單位時,適當(dāng)加括號如:溫度由10度下降n度后的溫度應(yīng)該是(10-n)度,而不能寫成10-n度。4、除法變分?jǐn)?shù)7概念的理解(2)0.4的次數(shù)是

.(5)三個連續(xù)的奇數(shù),中間一個是n,則這三個數(shù)的和為

.(3)多項式的次數(shù)為

,項為

,第三項的系數(shù)是

,三次項是

,常數(shù)項是

.

(1)列式表示:p的3倍的是

.(4)寫出的一個同類項

.(6)多項式與的差是

.(7)代數(shù)式中單項式有

,多項式有

,整式

.概念的理解(2)0.4的次數(shù)是8(8)以上代數(shù)式中,哪些符合書寫要求?(8)以上代數(shù)式中,哪些符合書寫要求?9(9)下列各式中哪些是單項式(系數(shù)、次數(shù)),哪些是多項式(項、次數(shù))?(9)下列各式中哪些是單項式(系數(shù)、次數(shù)),哪些是多項式(項10(1)所含字母相同;(2)相同字母的指數(shù)也分別相同;(滿足這樣條件)的項,叫同類項;1、同類項(3)所有的常數(shù)項也是同類項?;仡?:注意:“兩個相同”,即:“字母相同、相同字母的指數(shù)相同”;“兩個無關(guān)”,即:“與系數(shù)無關(guān)、與字母的順序無關(guān)”。(1)所含字母相同;1、同類項(3)所有的常數(shù)項也11系數(shù)相加作為結(jié)果的系數(shù),并且字母和字母的指數(shù)不變。2、合并同類項法則:把多項式中的同類項合并成一項,叫做合并同類項注:如果兩個同類項的系數(shù)互為相反數(shù),則結(jié)果為0系數(shù)相加作為結(jié)果的系數(shù),并且字母和字母的指數(shù)不變。2、合并同12在合并同類項時結(jié)果往往是一個多項式,通常把這個結(jié)果寫成按某一個字母的升冪或降冪的形式排列:升冪排列:按照某字母的指數(shù)從小到大的順序排列降冪排列:按照某字母的指數(shù)從大到小的順序排列在合并同類項時結(jié)果往往是一個多項式,通常把這個結(jié)果寫成按某一13練習(xí)1.把下列多項式按照升冪排列,然后再按照降冪排列(1)5a2+4-2a(2)x2-x4+2-5x2.把多項式按y降冪排列練習(xí)2.把多項式按y降冪排列14如果括號前面有系數(shù),可按乘法分配律和去括號法則去括號,不要漏乘,也不要弄錯各項的符號.3、去括號法則:括號前面帶“+”的括號,去括號時括號內(nèi)的各項都不變符號。括號前面帶“-”的括號,去括號時括號內(nèi)的各項都改變符號。“負(fù)”變“正”不變!如果括號前面有系數(shù),可按乘法分配律和3、去括號法則:15對去括號法則的理解及注意事項如下:(1)去括號的依據(jù)是乘法分配律;(2)注意法則中“都”字,變號時,各項都要變,不是只變第一項;若不變號,各項都不變號;(3)有多重括號時,一般先去小括號,再去中括號,最后去大括號。每去掉一層括號,如果有同類項應(yīng)隨時合并,為下一步運算簡便化,減少差錯。對去括號法則的理解及注意事項如下:(1)去括號的依據(jù)是乘法分164、整式加減法則:5、整式加減求值步驟:①化簡(去括號、合并同類項)②代入③運算注意:整式加減運算的結(jié)果仍然是整式(單項式或不含同類項的多項式)一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項.4、整式加減法則:5、整式加減求值步驟:①化簡(去括號、合并17練習(xí):1、若與是同類項,則m=

,n=

。2、下列各題計算的結(jié)果對不對?如果不對,指出錯在哪里?練習(xí):1、若與18課堂練習(xí)1.選擇題:(1)一個二次式加上一個一次式,其和是()A.一次式B.二次式C.三次式D.次數(shù)不定(2).一個二次式加上一個二次式,其和是()

A.一次式B.二次式C.常數(shù)D.次式不高于二次的整式(3).一個二次式減去一個一次式,其差是()A.一次式B.二次式C.常數(shù)D.次數(shù)不定BDB課堂練習(xí)1.選擇題:BDB19計算與求值:計算與求值:20a0b已知數(shù)a,b在數(shù)軸上的位置如圖所示化簡下列式子:整式與絕對值a0b已知數(shù)a,b在數(shù)軸上的位置如圖所示化簡下列式子:整21規(guī)律的探索1.觀察下列算式:12-02=1+0=122-12=2+1=332-22=3+2=542-32=4+3=7……若用n表示自然數(shù),請把你觀察的規(guī)律用含n的式子表示

.2.第n個圖案中有地磚

塊.規(guī)律的探索1.觀察下列算式:12-02=1+0=122-1222實際問題(1)小明在實踐課中做一個長方形模型,一邊為3a+2b,另一邊比它小a-b,則長方形的周長為多少?(2)大眾超市出售一種商品其原價為a元,現(xiàn)三種調(diào)價方案:1.先提價格上漲20%,再降價格20%2.先降價格上漲20%,再提價格20%3.先提價格上漲15%,再降價格15%問用這三種方案調(diào)價結(jié)果是否一樣?最后是不是都恢復(fù)了原價?實際問題(1)小明在實踐課中做一個長方形模型,一邊為3a+223決策題:1、某移動通訊公司開設(shè)了兩種通訊業(yè)務(wù):“全球通”使用者繳50元月租費,然后每通話1分鐘再付話費0.4元;“快捷通”不繳月租費,每通話1分鐘,付話費0.6元(本題的通話均指市內(nèi)通話).若一個月內(nèi)通話x分鐘,兩種方式的費用分別為y1元和y2元.(1)用含x的代數(shù)式分別表示y1和y2,則y1=________,y2=________.(2)某人估計一個月內(nèi)通話300分鐘,應(yīng)選擇哪種移動通訊合算些?決策題:1、某移動通訊公司開設(shè)了兩種通訊業(yè)務(wù):“全球通”使用24例2A和B兩家公司都準(zhǔn)備向社會招聘人才,兩家公司招聘條件基本相同,只有工資待遇有如下差異:A公司年薪10000元,從第二年開始每年加工齡工資200元,B公司半年年薪5000元,每半年加工齡工資50元,從經(jīng)濟收入的角度考慮的話,選擇哪家公司有利?第n年在A公司收入為10000+(n-1)×200,第n年在B公司收入為而【復(fù)習(xí)課件】第二章整式的加減復(fù)習(xí)課251.指出下各式的關(guān)系(相等、相反數(shù)、不確定):(1)a-b與b-a(2)-a-b與-(b-a)(3)–(a-b)與b-a(4)–(a-b)與b-a補充兩題:2.1.指出下各式的關(guān)系(相等、相反數(shù)、不確定):(1)a-b26第二章整式的加減復(fù)習(xí)第二章整式的加減復(fù)習(xí)27用字母表示數(shù)列式表示數(shù)量關(guān)系單項式多項式整式整式加減合并同類項去括號本章知識結(jié)構(gòu)圖:1.列整式能力2.整式的加減計算能力3.培養(yǎng)符號感4.注重數(shù)學(xué)思想整體代換思想從特殊到一般,再到特殊的思想用字母表示數(shù)列式表示數(shù)量關(guān)系單項式多項式整式整式加減合并同類28知識回顧整式的加減用字母表示數(shù)單項式:多項式:去括號:同類項:合并同類項:整式的加減:系數(shù)、次數(shù)項、次數(shù)、常數(shù)項定義、“兩相同、兩無關(guān)”定義、法則、步驟法則整式練習(xí)(一)練習(xí)(二)練習(xí)(三)步驟知識回顧整式的加減29次數(shù):所有字母的指數(shù)的和。系數(shù):單項式中的數(shù)字因數(shù)。項:式中的每個單項式叫多項式的項。(其中不含字母的項叫做常數(shù)項)次數(shù):多項式中次數(shù)最高的項的次數(shù)。整式注意:1、多項式的次數(shù)為最高次項的次數(shù).2、多項式的每一項都包括它前面的符號.回顧1:單獨的一個數(shù)字或字母也是單項式.次數(shù):所有字母的指數(shù)的和。系數(shù):單項式中的數(shù)字因數(shù)。項:式中30(1)圓周率是常數(shù)。(2)如果單項式是單獨的字母,那么它的系數(shù)是1。如:單項式c的系數(shù)是1。(3)當(dāng)一個單項式的系數(shù)是1或–1時,“1”通常省略不寫,但不要誤認(rèn)為是0,如a2,–abc;(4)單項式的系數(shù)是帶分?jǐn)?shù)時,還常寫成假分?jǐn)?shù),如寫成。(5)單獨的數(shù)字不含字母,所以它的次數(shù)是零次.注意:(1)圓周率是常數(shù)。(2)如果單項式是單獨的字母,那么它的31代數(shù)式的書寫要求1、乘號盡量省略;如:2a,2(m+n)2、數(shù)字在前,字母在后;如2(m+n)不要寫成(m+n)23、數(shù)數(shù)相乘,乘號不變;如“3×7xy”不能寫成“3·7xy”,更不能寫成37xy,而要直接寫成21xy代數(shù)式的書寫要求1、乘號盡量省略;324、除法變分?jǐn)?shù)如:梯形面積表示成(a+b)h,而不要寫成(a+b)h÷25、小數(shù)變分?jǐn)?shù)、帶分?jǐn)?shù)變假分?jǐn)?shù)6、帶單位時,適當(dāng)加括號如:溫度由10度下降n度后的溫度應(yīng)該是(10-n)度,而不能寫成10-n度。4、除法變分?jǐn)?shù)33概念的理解(2)0.4的次數(shù)是

.(5)三個連續(xù)的奇數(shù),中間一個是n,則這三個數(shù)的和為

.(3)多項式的次數(shù)為

,項為

,第三項的系數(shù)是

,三次項是

,常數(shù)項是

.

(1)列式表示:p的3倍的是

.(4)寫出的一個同類項

.(6)多項式與的差是

.(7)代數(shù)式中單項式有

,多項式有

,整式

.概念的理解(2)0.4的次數(shù)是34(8)以上代數(shù)式中,哪些符合書寫要求?(8)以上代數(shù)式中,哪些符合書寫要求?35(9)下列各式中哪些是單項式(系數(shù)、次數(shù)),哪些是多項式(項、次數(shù))?(9)下列各式中哪些是單項式(系數(shù)、次數(shù)),哪些是多項式(項36(1)所含字母相同;(2)相同字母的指數(shù)也分別相同;(滿足這樣條件)的項,叫同類項;1、同類項(3)所有的常數(shù)項也是同類項。回顧2:注意:“兩個相同”,即:“字母相同、相同字母的指數(shù)相同”;“兩個無關(guān)”,即:“與系數(shù)無關(guān)、與字母的順序無關(guān)”。(1)所含字母相同;1、同類項(3)所有的常數(shù)項也37系數(shù)相加作為結(jié)果的系數(shù),并且字母和字母的指數(shù)不變。2、合并同類項法則:把多項式中的同類項合并成一項,叫做合并同類項注:如果兩個同類項的系數(shù)互為相反數(shù),則結(jié)果為0系數(shù)相加作為結(jié)果的系數(shù),并且字母和字母的指數(shù)不變。2、合并同38在合并同類項時結(jié)果往往是一個多項式,通常把這個結(jié)果寫成按某一個字母的升冪或降冪的形式排列:升冪排列:按照某字母的指數(shù)從小到大的順序排列降冪排列:按照某字母的指數(shù)從大到小的順序排列在合并同類項時結(jié)果往往是一個多項式,通常把這個結(jié)果寫成按某一39練習(xí)1.把下列多項式按照升冪排列,然后再按照降冪排列(1)5a2+4-2a(2)x2-x4+2-5x2.把多項式按y降冪排列練習(xí)2.把多項式按y降冪排列40如果括號前面有系數(shù),可按乘法分配律和去括號法則去括號,不要漏乘,也不要弄錯各項的符號.3、去括號法則:括號前面帶“+”的括號,去括號時括號內(nèi)的各項都不變符號。括號前面帶“-”的括號,去括號時括號內(nèi)的各項都改變符號。“負(fù)”變“正”不變!如果括號前面有系數(shù),可按乘法分配律和3、去括號法則:41對去括號法則的理解及注意事項如下:(1)去括號的依據(jù)是乘法分配律;(2)注意法則中“都”字,變號時,各項都要變,不是只變第一項;若不變號,各項都不變號;(3)有多重括號時,一般先去小括號,再去中括號,最后去大括號。每去掉一層括號,如果有同類項應(yīng)隨時合并,為下一步運算簡便化,減少差錯。對去括號法則的理解及注意事項如下:(1)去括號的依據(jù)是乘法分424、整式加減法則:5、整式加減求值步驟:①化簡(去括號、合并同類項)②代入③運算注意:整式加減運算的結(jié)果仍然是整式(單項式或不含同類項的多項式)一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項.4、整式加減法則:5、整式加減求值步驟:①化簡(去括號、合并43練習(xí):1、若與是同類項,則m=

,n=

。2、下列各題計算的結(jié)果對不對?如果不對,指出錯在哪里?練習(xí):1、若與44課堂練習(xí)1.選擇題:(1)一個二次式加上一個一次式,其和是()A.一次式B.二次式C.三次式D.次數(shù)不定(2).一個二次式加上一個二次式,其和是()

A.一次式B.二次式C.常數(shù)D.次式不高于二次的整式(3).一個二次式減去一個一次式,其差是()A.一次式B.二次式C.常數(shù)D.次數(shù)不定BDB課堂練習(xí)1.選擇題:BDB45計算與求值:計算與求值:46a0b已知數(shù)a,b在數(shù)軸上的位置如圖所示化簡下列式子:整式與絕對值a0b已知數(shù)a,b在數(shù)軸上的位置如圖所示化簡下列式子:整47規(guī)律的探索1.觀察下列算式:12-02=1+0=122-12=2+1=332-22=3+2=542-32=4+3=7……若用n表示自然數(shù),請把你觀察的規(guī)律用含n的式子表示

.2.第n個圖案中有地磚

塊.規(guī)律的探索1.觀察下列算式:12-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論