下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°2.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.3.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°4.如圖,四邊形ABCD內(nèi)接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.5.如圖,甲、乙、丙圖形都是由大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個數(shù).其中主視圖相同的是()A.僅有甲和乙相同 B.僅有甲和丙相同C.僅有乙和丙相同 D.甲、乙、丙都相同6.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.7.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.58.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(shù)(k≠0)的圖象經(jīng)過點C.則下列結(jié)論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數(shù)的圖象上.D.將□OACB繞點O旋轉(zhuǎn)180°,點C的對應點落在反比例函數(shù)圖象的另一分支上.9.如圖所示幾何體的主視圖是()A. B. C. D.10.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大二、填空題(本大題共6個小題,每小題3分,共18分)11.比較大?。?(填入“>”或“<”號)12.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.13.某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調(diào)查,要求每名學生只寫一類最喜歡的球類運動,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分那么,其中最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為____________%14.在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結(jié)果用含有a,b,c的式子表示)15.如圖,中,,,,將繞點逆時針旋轉(zhuǎn)至,使得點恰好落在上,與交于點,則的面積為_________.16.若n邊形的內(nèi)角和是它的外角和的2倍,則n=.三、解答題(共8題,共72分)17.(8分)在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結(jié)果即可).18.(8分)先化簡,再求值:1+xx2-119.(8分)列方程解應用題:某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數(shù)量是第一次的2倍,但進價漲了4元/件,結(jié)果共用去17.6萬元.該商場第一批購進襯衫多少件?商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?20.(8分)解方程:.21.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?22.(10分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.23.(12分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數(shù)y=ax2+2x+c的表達式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.24.如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
先根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質(zhì),等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質(zhì),三角形內(nèi)角和定理以及角平分線定義,求出∠ACB=70°是解題的關(guān)鍵.2、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.3、D【解析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.4、C【解析】
根據(jù)平行四邊形的性質(zhì)和圓周角定理可得出答案.【詳解】根據(jù)平行四邊形的性質(zhì)可知∠B=∠AOC,根據(jù)圓內(nèi)接四邊形的對角互補可知∠B+∠D=180°,根據(jù)圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點睛】該題主要考查了圓周角定理及其應用問題;應牢固掌握該定理并能靈活運用.5、B【解析】試題分析:根據(jù)分析可知,甲的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;乙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,1;丙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;則主視圖相同的是甲和丙.考點:由三視圖判斷幾何體;簡單組合體的三視圖.6、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當0<x<2時,AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數(shù),所以所選答案C錯誤,答案D錯誤,∵a=>0,開口向上;(2)當2≤x≤6時,如圖,此時y=×2×2=2,(3)當6<x≤8時,如圖,設△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯誤,故選A.點睛:本題考查函數(shù)的圖象.在運動的過程中正確區(qū)分函數(shù)圖象是解題的關(guān)鍵.7、C【解析】
根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關(guān)鍵.8、B【解析】
先根據(jù)平行四邊形的性質(zhì)得到點的坐標,再代入反比例函數(shù)(k≠0)求出其解析式,再根據(jù)反比例函數(shù)的圖象與性質(zhì)對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(shù)(k≠0)的圖象經(jīng)過點,,反比例函數(shù)解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變?yōu)?,在反比例函?shù)圖象上,故正確;因為反比例函數(shù)的圖象關(guān)于原點中心對稱,故將□OACB繞點O旋轉(zhuǎn)180°,點C的對應點落在反比例函數(shù)圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質(zhì)和反比例函數(shù)的圖象與性質(zhì),結(jié)合圖形,熟練掌握和運用相關(guān)性質(zhì)定理是解答關(guān)鍵.9、C【解析】
從正面看幾何體,確定出主視圖即可.【詳解】解:幾何體的主視圖為故選C.【點睛】本題考查了簡單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.10、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.二、填空題(本大題共6個小題,每小題3分,共18分)11、>【解析】
試題解析:∵<∴4<.考點:實數(shù)的大小比較.【詳解】請在此輸入詳解!12、1【解析】
兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點睛】本題考查的知識點為:同類項中相同字母的指數(shù)是相同的.13、1%【解析】
依據(jù)最喜歡羽毛球的學生數(shù)以及占被調(diào)查總?cè)藬?shù)的百分比,即可得到被調(diào)查總?cè)藬?shù),進而得出最喜歡籃球的學生數(shù)以及最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比.【詳解】∵被調(diào)查學生的總數(shù)為10÷20%=50人,
∴最喜歡籃球的有50×32%=16人,
則最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比=×100%=1%,
故答案為:1.【點睛】本題主要考查扇形統(tǒng)計圖,扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關(guān)系.14、2a+12b【解析】如圖2,翻折4次時,左側(cè)邊長為c,如圖2,翻折5次,左側(cè)邊長為a,所以翻折4次后,如圖1,由折疊得:AC=A===,所以圖形的周長為:a+c+5b,因為∠ABC<20°,所以,翻折9次后,所得圖形的周長為:2a+10b,故答案為:2a+10b.15、【解析】
首先證明△CAA′是等邊三角形,再證明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三邊的關(guān)系求出CD、A′D即可解決問題.【詳解】在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC繞點C逆時針旋轉(zhuǎn)至△A′B′C,使得點A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′為等邊三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案為:【點睛】本題考查了含30度的直角三角形三邊的關(guān)系,等邊三角形的判定和性質(zhì)以及旋轉(zhuǎn)的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)“對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等”是解題的關(guān)鍵.16、6【解析】此題涉及多邊形內(nèi)角和和外角和定理多邊形內(nèi)角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=6三、解答題(共8題,共72分)17、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】
(I)如圖①,當OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問題,再根據(jù)對稱性確定D″的坐標;(II)如圖②,當α=60°時,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問題;(III)分兩種情形分別求解即可解決問題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對稱性可知,點D″在線段BC′上時,D″(6,4)也滿足條件.綜上所述,滿足條件的點D坐標(10,4)或(6,4).(II)如圖②,當α=60°時,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當B、C′、D′共線時,由(Ⅰ)可知,C′(8,4).②如圖④中,當B、C′、D′共線時,BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點睛】本題考查三角形綜合題、旋轉(zhuǎn)變換、矩形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活應用所學知識解決問題,學會用分類討論的思想思考問題,屬于中考壓軸題.18、3+3【解析】
先化簡分式,再計算x的值,最后把x的值代入化簡后的分式,計算出結(jié)果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當x=2cos30°+tan45°=2×32=3+1時.xx-1=【點睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關(guān)鍵是掌握分式的運算法則和運算順序.19、(1)2000件;(2)90260元.【解析】
(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)單價=總價÷數(shù)量結(jié)合第二批比第一批的進價漲了4元/件,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)用(1)的結(jié)論×2可求出第二批購進該種襯衫的數(shù)量,再利用總利潤=銷售收入-成本,即可得出結(jié)論.【詳解】解:(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)題意得:-=4,解得:x=2000,經(jīng)檢驗,x=2000是所列分式方程的解,且符合題意.答:商場第一批購進襯衫2000件.(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).答:售完這兩批襯衫,商場共盈利90260元.【點睛】本題考查了分式方程的應用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出分式方程;(2)根據(jù)數(shù)量關(guān)系,列式計算.20、x=,x=﹣2【解析】
方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】,則2x(x+1)=3(1﹣x),2x2+5x﹣3=0,(2x﹣1)(x+3)=0,解得:x1=,x2=﹣3,檢驗:當x=,x=﹣2時,2(x+1)(1﹣x)均不等于0,故x=,x=﹣2都是原方程的解.【點睛】本題考查解分式方程的能力.(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解;(2)解分式方程一定注意要驗根;(3)去分母時要注意符號的變化.21、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識點.22、這棟高樓的高度是【解析】
過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過點A作AD⊥BC于點D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點睛】本題主要考查了解直角三角形的應用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年職業(yè)技能鑒定考試(無人機駕駛員-中級)歷年參考題庫及答案
- 重慶市永川區(qū)2025-2026學年八年級上學期1月期末考試語文試題(含答案)
- 2026及未來5年中國變頻器檢測行業(yè)市場全景調(diào)查及未來趨勢研判報告
- 數(shù)據(jù)庫設計與優(yōu)化實操指南
- 數(shù)據(jù)庫設計及優(yōu)化完整指南
- 城市供水主干管改造建設項目規(guī)劃設計方案
- 綠色供暖示范項目規(guī)劃設計方案
- 高吸水性樹脂生產(chǎn)線項目規(guī)劃設計方案
- 鋼結(jié)構(gòu)幕墻施工技術(shù)交流會議方案
- 水滸傳中考真題及答案
- 2026年教育平臺資源輸出協(xié)議
- 【《四旋翼飛行器坐標系及相互轉(zhuǎn)換關(guān)系分析綜述》1000字】
- 廣東深圳市鹽田高級中學2024~2025學年高一上冊1月期末考試化學試題 附答案
- 人力資源部2025年度工作總結(jié)與2026年度戰(zhàn)略規(guī)劃
- 2025年安徽理工大學馬克思主義基本原理概論期末考試參考題庫
- 機械工程師職稱評定技術(shù)報告模板
- 檔案移交數(shù)字化建設規(guī)劃
- 孤獨癥個案護理
- 建筑施工風險辨識與防范措施
- 高職汽車維修專業(yè)培訓教材
- 2026年中級注冊安全工程師之安全生產(chǎn)法及相關(guān)法律知識考試題庫500道含答案ab卷
評論
0/150
提交評論