版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,共60分)1.已知直線和互相平行,則實數(shù)等于()A.或3 B.C. D.1或2.已知偶函數(shù)在區(qū)間單調遞減,則滿足的x取值范圍是A. B.C D.3.根據(jù)下表數(shù)據(jù),可以判定方程的根所在的區(qū)間是()123400.6911.101.3931.51.1010.75A. B.C. D.4.已知函數(shù)在R上為減函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.5.已知點在函數(shù)的圖象上,則下列各點也在該函數(shù)圖象上的是()A. B.C. D.6.設集合,,則()A B.C. D.7.在下列各區(qū)間上,函數(shù)是單調遞增的是A. B.C. D.8.若,則角終邊所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限9.Logistic模型是常用數(shù)學模型之一,可應用于流行病學領域.有學者根據(jù)公布數(shù)據(jù)建立了某地區(qū)新冠肺炎累計確診病例數(shù)(的單位:天)的Logistic模型:其中為最大確診病例數(shù).當時,標志著已初步遏制疫情,則約為()A.60 B.65C.66 D.6910.若冪函數(shù)的圖象過點,則它的單調遞增區(qū)間是()A.(0,+∞) B.[0,+∞)C.(-∞,+∞) D.(-∞,0)11.函數(shù)的圖象可由函數(shù)的圖像()A.向左平移個單位得到 B.向右平移個單位得到C.向左平移個單位得到 D.向右平移個單位得到12.冪函數(shù)圖象經過點,則的值為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.若將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則的最小值為______14.冪函數(shù)為偶函數(shù)且在區(qū)間上單調遞減,則________,________.15.直線與平行,則的值為_________.16.某高中校為了減輕學生過重的課業(yè)負擔,提高育人質量,在全校所有的1000名高中學生中隨機抽取了100名學生,了解他們完成作業(yè)所需要的時間(單位:h),將數(shù)據(jù)按照0.5,1,1,1.5,1.5,2,2,2.5,2.5,3,3,3.5,分成6組,并將所得的數(shù)據(jù)繪制成頻率分布直方圖(如圖所示).由圖中數(shù)據(jù)可知a=___________;估計全校高中學生中完成作業(yè)時間不少于3h的人數(shù)為三、解答題(本大題共6小題,共70分)17.我們知道,指數(shù)函數(shù)(,且)與對數(shù)函數(shù)(,且)互為反函數(shù).已知函數(shù),其反函數(shù)為.(1)求函數(shù),的最小值;(2)對于函數(shù),若定義域內存在實數(shù),滿足,則稱為“L函數(shù)”.已知函數(shù)為其定義域上的“L函數(shù)”,求實數(shù)的取值范圍.18.如圖,正三棱柱的底面邊長為3,側棱,D是CB延長線上一點,且求二面角的正切值;求三棱錐的體積19.如圖,已知四棱錐中,底面為平行四邊形,點,,分別是,,的中點(1)求證:平面;(2)求證:平面平面20.已知函數(shù).(1)求的最小正周期和單調遞增區(qū)間;(2)求在區(qū)間的最大值和最小值21.設函數(shù),(1)根據(jù)定義證明在區(qū)間上單調遞增;(2)判斷并證明的奇偶性;(3)解關于x的不等式.22.已知對數(shù)函數(shù)f(x)=logax(a>0,且a≠1)的圖象經過點(4,2)(1)求實數(shù)a的值;(2)如果f(x+1)<0,求實數(shù)x的取值范圍
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】由兩直線平行,得到,求出,再驗證,即可得出結果.詳解】∵兩條直線和互相平行,∴,解得或,若,則與平行,滿足題意;若,則與平行,滿足題意;故選:A2、D【解析】根據(jù)題意,結合函數(shù)的奇偶性與單調性分析可得,解不等式可得x的取值范圍,即可得答案【詳解】根據(jù)題意,偶函數(shù)在區(qū)間單調遞減,則在上為增函數(shù),則,解可得:,即x的取值范圍是;故選D【點睛】本題考查函數(shù)奇偶性與單調性綜合應用,注意將轉化為關于x的不等式,屬于基礎題3、B【解析】構造函數(shù),通過表格判斷,判斷零點所在區(qū)間,即得結果.【詳解】設函數(shù),易見函數(shù)在上遞增,由表可知,,故,由零點存在定理可知,方程的根即函數(shù)的零點在區(qū)間上.故選:B.4、D【解析】根據(jù)分段函數(shù)單調性,可得關于的不等式組,解不等式組即可確定的取值范圍.【詳解】函數(shù)在R上為減函數(shù)所以滿足解不等式組可得.故選:D【點睛】本題考查了分段函數(shù)單調性的應用,根據(jù)分段函數(shù)的單調性求參數(shù)的取值范圍,屬于中檔題.5、D【解析】由題意可得,再依次驗證四個選項的正誤即可求解.【詳解】因為點在函數(shù)的圖象上,所以,,故選項A不正確;,故選項B不正確;,故選項C不正確;,故選項D正確.故選:D6、C【解析】利用集合的交集運算求解.【詳解】因為集合,,所以,故選:C7、C【解析】根據(jù)選項的自變量范圍判斷函數(shù)的單調區(qū)間即可.【詳解】當時,,由正弦函數(shù)單調性知,函數(shù)單增區(qū)間應滿足,即,觀察選項可知,是函數(shù)的單增區(qū)間,其余均不是,故選:C8、D【解析】利用同角三角函數(shù)基本關系式可得,結合正切值存在可得角終邊所在象限【詳解】,且存在,角終邊所在象限是第三或第四象限故選D【點睛】本題考查三角函數(shù)的象限符號,是基礎題9、B【解析】由已知可得方程,解出即可【詳解】解:由已知可得,解得,兩邊取對數(shù)有,解得.故選:B10、D【解析】設冪函數(shù)為y=xa,把點(2,)代入,求出a的值,從而得到冪函數(shù)的方程,再判斷冪函數(shù)的單調遞增區(qū)間.【詳解】設y=xa,則=2a,解得a=-2,∴y=x-2其單調遞增區(qū)間為(-∞,0)故選D.【點睛】本題考查了通過待定系數(shù)法求冪函數(shù)的解析式,以及冪函數(shù)的主要性質.11、D【解析】異名函數(shù)圖像的平移先化同名,然后再根據(jù)“左加右減,上加下減”法則進行平移.【詳解】變換到,需要向右平移個單位.故選:D【點睛】函數(shù)圖像平移異名化同名的公式:,.12、D【解析】設,由點冪函數(shù)上求出參數(shù)n,即可得函數(shù)解析式,進而求.【詳解】設,又在圖象上,則,可得,所以,則.故選:D二、填空題(本大題共4小題,共20分)13、;【解析】因為函數(shù)的圖象向左平移個單位長度,得到,所以的最小值為14、(1).或3(2).4【解析】根據(jù)題意可得:【詳解】區(qū)間上單調遞減,,或3,當或3時,都有,,.故答案為:或3;4.15、【解析】根據(jù)兩直線平行得出實數(shù)滿足的等式與不等式,解出即可.【詳解】由于直線與平行,則,解得.故答案為:.【點睛】本題考查利用兩直線平行求參數(shù),考查運算求解能力,屬于基礎題.16、①.0.1②.50【解析】利用頻率之和為1可求a,由圖求出完成作業(yè)時間不少于3h的頻率,由頻數(shù)=總數(shù)×【詳解】由0.5×2a+0.3+0.4+0.5+0.6=1可求a=0.1;由圖可知,全校高中學生中完成作業(yè)時間不少于3h的頻率為0.5×0.1=0.05故答案為:0.1;50三、解答題(本大題共6小題,共70分)17、(1)答案見解析(2)【解析】(1)利用換元法令,可得所求為關于p的二次函數(shù),根據(jù)二次函數(shù)的性質,分析討論,即可得答案.(2)根據(jù)題意,分別討論在、和上存在實數(shù),滿足題意,根據(jù)所給方程,代入計算,結合函數(shù)單調性,分析即可得答案.【小問1詳解】由題意得所以,,令,設則為開口向上,對稱軸為的拋物線,當時,在上為單調遞增函數(shù),所以的最小值為;當時,在上單調遞減,在上單調遞增,所以的最小值為;當時,在上為單調遞減函數(shù),所以的最小值為;綜上,當時,的最小值為,當時,的最小值為,當時,的最小值為【小問2詳解】①設在上存在,滿足,則,令,則,當且僅當時取等號,又,所以,即,所以,所以所以②設存在,滿足,則,即有解,因為在上單調遞減,所以,同理當在存在,滿足時,解得,所以實數(shù)的取值范圍【點睛】解題的關鍵是理解新定義,并根據(jù)所給定義,代入計算,結合函數(shù)單調性及函數(shù)存在性思想,進行求解,屬難題18、(1)2(2)【解析】取BC中點O,中點E,連結OE,OA,以O為原點,OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角的正切值三棱錐的體積,由此能求出結果【詳解】取BC中點O,中點E,連結OE,OA,由正三棱柱的底面邊長為3,側棱,D是CB延長線上一點,且以O為原點,OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標系,則3,,0,,0,,0,,所以0,,3,,其中平面ABD的法向量1,,設平面的法向量y,,則,取,得1,,設二面角的平面角為,則,則,則,所以二面角的正切值為2由(1)可得平面,所以是三棱錐的高,且,所以三棱錐的體積:【點睛】本題主要考查了二面角的求解,及空間幾何體的體積的計算,其中解答中根據(jù)幾何體的結構特征,建立適當?shù)目臻g直角坐標系,利用向量的夾角公式求解二面角問題是求解空間角的常用方法,同時注意“等體積法”在求解三棱錐體積中的應用,著重考查了推理與運算能力,屬于中檔試題19、(1)見解析(2)見解析【解析】(1)根據(jù)三角形的中位線,可得,由此證得平面.(2)利用中位線證明,,故,由(1)得,證明分別平行于平面,由此可得平面平面.【詳解】(1)由題意:四棱錐的底面為平行四邊形,點,,分別是,,的中點,∴是的中點,∴,又∵平面,平面,∴平面(2)由(1),知,∵,分別是,的中點,∴,又∵平面,平面,平面同理平面,平面,平面,,∴平面平面【點睛】本題主要考查線面平行的判定定理,考查面面平行的判定定理.要證明線面平行,需在平面內找到一條直線和要證的直線平行,一般尋找的方法有三種:一是利用三角形的中位線,二是利用平行四邊形,三是利用面面平行.要證面面平行,則需證兩條相交直線和另一個平面平行.20、(1)最小正周期為,單調遞增區(qū)間;(2)在上的最大值為,最小值為.【解析】(1)由正弦型函數(shù)的性質,應用整體代入法有時單調遞增求增區(qū)間,由求最小正周期即可.(2)由已知區(qū)間確定的區(qū)間,進而求的最大值和最小值【詳解】(1)由三角函解析式知:最小正周期為,令,得,∴單調遞增區(qū)間為,(2)在上,有,∴當時取最小值,當時取最大值為.21、(1)證明見解析(2)奇函數(shù),證明見解析(3)【解析】(1)根據(jù)函數(shù)單調性的定義,準確運算,即可求解;(2)根據(jù)函數(shù)奇偶性的定義,準確化簡,即可求解;(3)根據(jù)函數(shù)的奇偶性和單調性,把不等式轉化為,得到,即可求解【小問1詳解】證明:,且,則,因為,,,所以,即,所以在上單調遞增【小問2詳解】證明:由,即,解得,即的定義域為,對于任意,函數(shù),則,即,所以是奇函數(shù).【小問3詳解】解:由(1)知,函數(shù)在上單調遞增,又因為x是增函數(shù),所以是上的增函數(shù),由,可得,由,可得,因為奇函數(shù),所以,所以原不等式可化為,則,解得,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省延邊州2025-2026學年高一(上)期末物理試卷(含答案)
- 河南省漯河市臨潁縣晨中學校2025-2026學年上學期10月月考八年級數(shù)學試卷(含答案)
- 期中測試卷(含答案含聽力原文無音頻)2025-2026學年人教版英語八年級下冊
- 無常題目及答案
- 望岳的題目及答案
- 新人教版九年級地理上冊期末試卷(及答案)
- 天津博邁科海洋工程有限公司臨港海洋重工建造基地一期工程環(huán)境影響補充報告簡本
- 電氣物聯(lián)網(wǎng)技術要點
- 雅安滎經220kV變電站110kV間隔擴建工程建設項目環(huán)境影響報告表
- 數(shù)字攝影考試試題及答案
- 2026中國國際航空招聘面試題及答案
- (2025年)工會考試附有答案
- 2026年國家電投集團貴州金元股份有限公司招聘備考題庫完整參考答案詳解
- 復工復產安全知識試題及答案
- 中燃魯西經管集團招聘筆試題庫2026
- 資產接收協(xié)議書模板
- 數(shù)據(jù)中心合作運營方案
- 印鐵涂料基礎知識
- 工資欠款還款協(xié)議書
- 石籠網(wǎng)廠施工技術交底
- 2025至2030全球及中國經顱刺激器行業(yè)產業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
評論
0/150
提交評論