物理實驗(氫原子光譜)_第1頁
物理實驗(氫原子光譜)_第2頁
物理實驗(氫原子光譜)_第3頁
物理實驗(氫原子光譜)_第4頁
物理實驗(氫原子光譜)_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

TheSpectrumoftheHydrogenAtom1.PurposeInthisexperimentyouwillobservethediscretelightspectrumfromagasdischargelamp.Youwillfindthatthespectrumconsistsofacollectionofsharpmonochromaticlines.Usingadiffractiongratingspectrometer,youwillbeabletomeasurethewavelengthoftheemittedlighttobetterthanonepartinathousand.Thereforeitiscrucialtomakeallcalculationstofivesignificantfigures.2.IntroductionSpectrumoftheHydrogenAtomWhengasesaresubjectedtolargeappliedvoltages,theytendtoundergodielectricbreakdownandemitbrightlight.Ifoneexaminesthelightfromsuchagasdischargewithaspectrometer1,onefindsthatthelightconsistsmainlyofafewbrightlinesofpurecoloronagenerallydarkbackground.Forexample,excitedhydrogengaswillemitfourvisiblelinesduringbreakdown:red,green,blue,andviolet.Thisphenomenoncontrastssharplywiththecontinuousspectrumofcolorsobservedinlightfromthesunoranincandescentbulb.Thepropertyoflightthatweobserveascolorisactuallyrelatedtoitswavelength?.Inthelatenineteenthcentury,J.J.Ballmerdiscoveredanequationthatcorrectlypredictsthewavelengthsofthevisiblelinesinthehydrogenspectrum:Inthisexpression,ni=3,4,5….,andRistheso-calledRydbergconstant,Otherspectrallinesbeyondthevisiblewavelengthscanbeobservedinhydrogenandothergases;inhydrogen,thesewavelengthsaregivenbythegeneralformulaWherenfandniareintegers.Balmerderivedhisformulaforthehydrogenspectrumempirically;atthetime,hisresultdidnothaveafundamentalexplanationgroundedinclassicalphysics.Infact,classicalelectromagnetismpredictsthathydrogenatomsshouldradiatecontinuously,and,evenworse,thattheyshouldbehighlyunstable.Neitherpredictionisobserved,suggestingdeepflawsintheclassicaldescription.Theoriginofthelinespectrumbecameamajorproblemthatwasnotresolveduntil1913,whenNielsBohrsuggestedanalternativetheoryforatoms.Heproposedthatthevalenceelectroncouldonlyexistincertainenergystates,andcouldonly“jump”betweenthesediscretestatesdiscontinuously.Whena“jump”occurred,theatomwouldemitlighttoconserveenergy.Sincetheenergieswerediscrete,theemittedlightshouldalwayshavethesamefixedsetofcolors(wavelengths).Bohrwasabletoderiveaformulafortheenergyofthehydrogenatom’squantumenergylevelsintermsofthemassmandchargeeoftheelectron,thepermittivityoffreespace20,Planck’sconstanth,andanintegern:ThereforetheenergyemittedbytheatomduringtransitionfromaninitiallevelnitoafinallevelnfisTherelationshipbetweentheenergyEandthewavelength?ofthelightisduetoPlanck:Hence,onecanderiveanexpressionforthewavelengthoflightemittedduringanatomictransition:ResolvingaSpectrumwithaDiffractionGratingInordertodecomposeaspectrum,onecanuseaso-calledtransmissiongrating.Thegratingisnothingmorethanaslabofmaterialwithalargenumberoftinyparallelslits.Transmissiongratingsareoftenmadeoffinelymachinedglassorevencrystals.Thespacingdbetweentheslitsiscalledthe“l(fā)atticeconstant”ofthegrating.Consideracollimated(parallel)lightbeamincidentonagratingfromtheleft,asshowninFig.Eachslitwilldiffractthebeam,andactinturnasanewsourceofwaves.Thewavesallbegininphaseattheslits,butdependingontheanglewithwhichtheyleavethegrating(calledthediffractionangle..Adiffractiongratingwithslitseparationd.Thelocationofthediffractionmaximumontheviewingscreenisdependentonthewavelength?oftheincidentlight.Notethatthehorizontalscaleinthisdiagramhasbeenhighlydistorted,theytraveldifferentpathstotheviewingscreenandmaybeoutofphasebythatpoint.Fromthefigure,thedifferenceinthepathlengthfortwoadjacentslitsisInorderforthegratingtoformamaximumatsomepointontheviewingscreen,thewavesmustbeinphasethere.Thiswilloccurifthepathlengthdifferenceisanintegralmultipleofthewavelength:Therefore,wefindthatmaximawilloccurwheneverWheremiscalledtheorderofthemaxima.Equation(7.2)tellsusthatthemaximaforagiven?willoccuratdifferentangleswithrespecttothelaserbeamdirection.Thisishowthetransmissiongratingdecomposesaspectrumintoitsindividualwavelengths.Whenlightshinesthroughthegrating,particularcolorswillappearatseverallowerandhigheranglesrelativetotheforwarddirectionTheordernumbermreferstotherelativepositionofamaximumwithrespectto3.EXPERIMENTTheequipmentusedinthisexperiment,calledadiffractiongratingspectrometer,isdepictedinFig.Thespectrometercontainsthreemajorcomponents:acollimatortube,arotatingtable,andatelescope.Schematicofthespectrometeryouwillusetoobservethehydrogenspectrum.Thecollimatortubetakeslightfromexcitedhydrogengas,providedherebyanarclamp,andusesalenstocollimatethebeam—thatis,makethelightraysfromthesourceparallel.Figure:Schematicofthespectrometeryouwillusetoobservethehydrogenspectrum.Whentheparallelraysexitthetube,theytraveltothetransmissiongrating,whichismountedinthecenteroftherotatingspectrometerbase.Thelightdiffractedbythegratingmaybeviewedthroughaneyepieceattheendofthetelescopetube.Thetelescopeisabletoswivelwithrespecttothegrating,allowingyoutosweepthroughasetofanglesμandobservetheangledependenceofthevariousspectrallines.youcanthenusethisangletodeterminethewavelengthofeachlineyouobserve.Todeterminetheangles,thespectrometerbasecontainsagraduatedcircleattachedtothetelescope.Asyouturnthetelescope,youcanreadofftheangleusingtheangularscalescoredintothecircle.HowtoReadtheAngularScaleTheangularscaleinthebaseisnotastandardruler,butaVernierruler.Withastandardangularscale,youwouldprobablybeabletoresolveanglesdowntothenearestdegreeorhalfdegree.Inthisexperiment,wewouldlikeconsiderablymoreprecisioninourmeasurements.Therefore,thespectrometercontainsascalethatallowsuserstomeasureangleswithgreataccuracy,tothenearestarcminute:Thedevicecanachievethisprecisionbyhavingtwoscalesratherthanone.Thefirstisastandarddegreescalerunningfrom0±to360±,andthesecondisaVernierscalerunningfrom00to300.Tounderstandhowthesetwoscalesworktogether,consultFig.7.3asyoureadthefollowingprocedure.1.BeginbyfindingthezeromarkerontheVernierscale.SamplereadingfromthedegreeandVernierscalesinthespectrometerbase.2.ScandownfromtheVernierscaletothenextlineonthedegreescale,asreadfromtheleft.Thislineistheangleμ,accuratetothenearesthalfdegree(300).3.Readingfromlefttoright,findthelineontheVernierscalethatbestlinesupwithalineonthedegreescale.Thisvaluemarks,inarcminutes,yourpositionbetweentwoticksonthedegreescale.4.AddthefirstreadingfromthedegreescaletothesecondreadingfromtheVernierscale.Youhavenowmeasuredμtothenearestarcminute.Again,refertoFig.7.3asyoureadthisprocedure.Inthefigure,the0markontheVernierscaleisbetween50.5±(50±300)and51.0±(51±00).Hence,thebasemeasurementis50±300,sincewearereadingfromtheleft.OntheVernierscale,themark13bestmatchesamarkonthedegreescale.Therefore,withinthehalfdegreeinterval,weaddanadditional130.Theresultingmeasurementis4.ProcedureThefirstpartoftheexperimentwillbasicallyincludetheproceduretosetuptheequipment.Thisshouldbedonewithasmuchcareaspossible.Onlythenwillyoubeabletomeasurethewavelengthonthelimitofourapparatus.Ifyoudon’tsetupthespectrometercorrectlyyouwillgetsystematicerrors,skewingyourresults.AdjustingtheSpectrometer?Takethegratingoutoftheholderandclosethegreenknob.?Rotatetheyellowknobsuchthattheslitisabouthalfopen.?Inthestraight-throughposition(180±),lookthroughtheeyepieceandturnthepurplefocusingringuntilyouseeasharpimageoftheslit.?Loosentheredknobandmovethetelescopetubeuntilthecrosshairsareinthemiddleoftheslit.Tightenredknob.?OpenthegreenknobandturnthetabletopsuchthatthezeromarkfromtheVernierscalewiththemagnifyingglassislinedwitheither180±or360±fromtheouterscale.AlwaysuseonlythisVernierscaleanddon’tswitchtotheotheroneinbetween.Closethegreenknobanddon’topenitagainfortherestoftheexperiment!?Nowyoucanfineadjusttherelativepositionoftheinnerandouterscalebyturningtheblueknob.LineupthezeroontheVernierscaleand180±/360±andonthedegreescaleasascarefullyaspossible.NOTE:Forsomeofthespectrometers,thereisasmallmarktotheleftofthezeromarkontheVernierscale.Makesurethatyoulineupthezeromark,andnottheextramark.?Putthegratingintheholdersuchthatitisperpendiculartothetelescopetube-collimatortubeline.Closethewhitescrewtolockthegrating.ObtainingtheGratingLatticeConstantAfteradjustingthespectrometeryouwillmeasuretheyellowlineofaHeliumdischargelamp.Sinceweknowthatthewavelengthofthislightis?=5.8756×10?7m,wecandeterminethelatticeconstantdofthegratingquiteaccurately.Eventhoughthegratinghas600linesmm?1writtenonit,thisisonlyanapproximation.Wewanttoknowthelatticeconstanttofivesignificantdigitsandnotjustthree,?SwitchontheHeliumlampandlinethespectrometerupsuchthatyoucanseetheslitwell-illuminatedbythelampasyoulookthroughthetelescope.?Puttheblackcardboardoverthefrontendofyourcollimatortubeandcoverthespectrometerwithablackpieceofclothtoblocklightfromyoursurroundings(butbecarefulnottoblockthetelescopewiththecloth).?NOTE:thisstepandthenextshouldbeperformedinthedark;thereforeswitchoffthelightandusetheflashlightprovided(theyaresupposedtobequitedim)toreadthescale.?Opentheredknobandmovethetelescopetubetotheleftuntilthecrosshairsareinthecenteroftheyellowline.Youshouldfirstseeafewblueandgreenlines,thentheisolatedyellowline,andthenredlines.Theyellowlineshouldbesomewherearound20±degrees.?Notedowntheangleindegreesandminuteswhereyouseethefirstorderoftheyellowline.Dothesameontherightsideandaveragethesetwonumbers.?Usetheaverageandplugitintothegratingequation(m=1)todeterminethelatticeconstantdtoatleast5significantfigures.?Howmanylinesmm?1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論