版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年安徽省宿州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.1/4B.1/2C.1D.2
2.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
3.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
4.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
5.A.A.連續(xù)點(diǎn)
B.
C.
D.
6.
7.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
8.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
9.
10.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
11.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
12.
13.
14.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件15.
16.
17.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解18.
19.
20.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無(wú)水平漸近線,又無(wú)鉛直漸近線
二、填空題(20題)21.
22.
23.24.設(shè)f(x)=esinx,則=________。25.26.級(jí)數(shù)的收斂區(qū)間為_(kāi)_____.27.
28.
29.微分方程y"-y'-2y=0的通解為_(kāi)_____.30.
31.
32.
33.
34.
35.
36.
37.
38.設(shè)函數(shù)y=x2lnx,則y=__________.
39.40.三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).43.
44.
45.求微分方程的通解.46.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
49.50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則51.證明:52.求曲線在點(diǎn)(1,3)處的切線方程.53.54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.56.
57.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
60.四、解答題(10題)61.
62.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).
63.
64.
65.
66.
67.
68.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.
69.
70.
五、高等數(shù)學(xué)(0題)71.在下列函數(shù)中,在指定區(qū)間為有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
六、解答題(0題)72.將f(x)=sin3x展開(kāi)為x的冪級(jí)數(shù),并指出其收斂區(qū)間。
參考答案
1.C
2.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
3.C解析:
4.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時(shí),cosξ=0,因此選C。
5.C解析:
6.A
7.C
8.D
9.C
10.C
11.C
12.B
13.C
14.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
15.D
16.A
17.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
18.D
19.C
20.A
21.
22.-2y
23.24.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。
25.26.(-1,1)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
所給級(jí)數(shù)為不缺項(xiàng)情形.
可知收斂半徑,因此收斂區(qū)間為
(-1,1).
注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).
本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過(guò)于緊張而導(dǎo)致的錯(cuò)誤.
27.
28.(1+x)ex(1+x)ex
解析:29.y=C1e-x+C2e2x本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)微分方程的求解.
特征方程為r2-r-2=0,
特征根為r1=-1,r2=2,
微分方程的通解為y=C1e-x+C2ex.
30.0本題考查了利用極坐標(biāo)求二重積分的知識(shí)點(diǎn).
31.22解析:
32.
解析:
33.2
34.(1+x)2
35.y=1y=1解析:
36.-ln(3-x)+C-ln(3-x)+C解析:
37.
38.
39.
40.41.函數(shù)的定義域?yàn)?/p>
注意
42.
列表:
說(shuō)明
43.由一階線性微分方程通解公式有
44.
45.
46.
47.
48.
49.
50.由等價(jià)無(wú)窮小量的定義可知
51.
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.由二重積分物理意義知
55.
56.
則
57.
58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
59.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
60.
61.
62.
63.
64.
65.
66.
67.68.如圖10-2所示.本題考查的知識(shí)點(diǎn)為利用定積分求平面圖形的面積;利用定積分求旋轉(zhuǎn)體體積.
需注意的是所給平面圖形一部分位于x軸上方,而另一部分位于x軸下方.而位于x軸下方的圖形繞x軸旋轉(zhuǎn)一周所成的旋轉(zhuǎn)體包含于x軸上方的圖形繞x軸旋轉(zhuǎn)一周所成的旋轉(zhuǎn)體之中,因此只需求出x軸上方圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積,即為所求旋轉(zhuǎn)體體積.
69.70.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
將區(qū)域D表示為
問(wèn)題的難點(diǎn)在于寫(xiě)出區(qū)域D的表
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/Z 6113.405-2026無(wú)線電騷擾和抗擾度測(cè)量設(shè)備和測(cè)量方法規(guī)范第4-5部分:不確定度、統(tǒng)計(jì)學(xué)和限值建模替換試驗(yàn)方法的使用條件
- 流程工業(yè)智能制造技術(shù)理論及應(yīng)用 課件 第五章-流程工業(yè)過(guò)程實(shí)時(shí)優(yōu)化
- 感恩活動(dòng)策劃方案流程(3篇)
- 江門地產(chǎn)活動(dòng)策劃方案(3篇)
- 活動(dòng)策劃方案賺錢文案(3篇)
- 跨年歡聚活動(dòng)策劃方案(3篇)
- 配送企業(yè)人員管理制度范本(3篇)
- 高速道路救援管理制度范本(3篇)
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)投資保險(xiǎn)行業(yè)市場(chǎng)深度分析及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 養(yǎng)老院活動(dòng)策劃制度
- 2025屆新疆烏魯木齊市高三下學(xué)期三模英語(yǔ)試題(解析版)
- DB3210T1036-2019 補(bǔ)充耕地快速培肥技術(shù)規(guī)程
- 混動(dòng)能量管理與電池?zé)峁芾淼膮f(xié)同優(yōu)化-洞察闡釋
- T-CPI 11029-2024 核桃殼濾料標(biāo)準(zhǔn)規(guī)范
- 統(tǒng)編版語(yǔ)文三年級(jí)下冊(cè)整本書(shū)閱讀《中國(guó)古代寓言》推進(jìn)課公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 《顧客感知價(jià)值對(duì)綠色酒店消費(fèi)意愿的影響實(shí)證研究-以三亞S酒店為例(附問(wèn)卷)15000字(論文)》
- 勞動(dòng)仲裁申請(qǐng)書(shū)電子版模板
- 趙然尊:胸痛中心時(shí)鐘統(tǒng)一、時(shí)間節(jié)點(diǎn)定義與時(shí)間管理
- 家用燃?xì)庠罱Y(jié)構(gòu)、工作原理、配件介紹、常見(jiàn)故障處理
- ZD(J)9-型電動(dòng)轉(zhuǎn)轍機(jī)
- DB21T 3414-2021 遼寧省防汛物資儲(chǔ)備定額編制規(guī)程
評(píng)論
0/150
提交評(píng)論