2022-2023學(xué)年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年山東省威海市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(40題)1.由曲線y=1/X,直線y=x,x=2所圍面積為

A.A.

B.B.

C.C.

D.D.

2.

3.

4.

5.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。

A.30N·m,逆時(shí)針?lè)较駼.30N·m,順時(shí)針?lè)较駽.60N·m,逆時(shí)針?lè)较駾.60N·m,順時(shí)針?lè)较?/p>

6.

7.下列關(guān)系式中正確的有()。A.

B.

C.

D.

8.若,則()。A.-1B.0C.1D.不存在

9.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面

10.

11.

12.

13.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)

14.在企業(yè)中,財(cái)務(wù)主管與財(cái)會(huì)人員之間的職權(quán)關(guān)系是()

A.直線職權(quán)關(guān)系B.參謀職權(quán)關(guān)系C.既是直線職權(quán)關(guān)系又是參謀職權(quán)關(guān)系D.沒(méi)有關(guān)系

15.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小

16.A.A.2B.1C.0D.-1

17.

18.

19.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr

B.∫0πdθ∫0ar3dr

C.D.

20.

21.

22.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1

23.A.

B.

C.

D.

24.

25.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合

26.

27.等于().A.A.0

B.

C.

D.∞

28.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

29.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().

A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

30.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

31.

32.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

33.A.A.

B.B.

C.C.

D.D.

34.A.A.0B.1C.2D.任意值

35.

36.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)

37.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

38.

39.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)

B.

C.0

D.f(a)-f(-a)

40.

A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散

二、填空題(50題)41.

則b__________.

42.

43.設(shè)y=xe,則y'=_________.

44.

45.設(shè)f(x)=x(x-1),貝f'(1)=_________.

46.

47.設(shè)函數(shù)y=x3,則y'=________.

48.

49.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。

50.

51.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。

52.

53.

54.

55.

56.

57.

58.

59.設(shè)z=ln(x2+y),則dz=______.

60.

61.級(jí)數(shù)的收斂半徑為_(kāi)_____.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分

73.設(shè)f(0)=0,f'(0)存在,則

74.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.

75.

76.

77.

78.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為_(kāi)___。

79.

80.

81.y=lnx,則dy=__________。

82.

83.設(shè)y=ex,則dy=_________。

84.

85.

86.

87.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為_(kāi)_________.

88.

89.

90.

三、計(jì)算題(20題)91.求微分方程的通解.

92.

93.求微分方程y"-4y'+4y=e-2x的通解.

94.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

95.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

96.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

97.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

98.

99.證明:

100.

101.

102.

103.

104.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

105.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

106.

107.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

108.求曲線在點(diǎn)(1,3)處的切線方程.

109.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

110.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

四、解答題(10題)111.

112.

113.

114.

115.判定y=x-sinx在[0,2π]上的單調(diào)性。

116.

117.(本題滿分8分)

118.

119.

120.

五、高等數(shù)學(xué)(0題)121.求

六、解答題(0題)122.

參考答案

1.B本題考查了曲線所圍成的面積的知識(shí)點(diǎn),

曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,

2.A解析:

3.C

4.D

5.D

6.A

7.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此

可知應(yīng)選B。

8.D不存在。

9.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。

10.A解析:

11.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。

12.B

13.A

14.A解析:直線職權(quán)是指管理者直接指導(dǎo)下屬工作的職權(quán)。財(cái)務(wù)主管與財(cái)會(huì)人員之間是直線職權(quán)關(guān)系。

15.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。

16.C

17.C解析:

18.B解析:

19.B因?yàn)镈:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。

20.B

21.B解析:

22.C

23.A

24.A

25.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

26.C

27.A

28.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

29.A本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.

由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

30.D本題考查了曲線的漸近線的知識(shí)點(diǎn),

31.B

32.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

33.B本題考查了已知積分函數(shù)求原函數(shù)的知識(shí)點(diǎn)

34.B

35.B解析:

36.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.

37.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

y=ln(1+x2)的定義域?yàn)?-∞,+∞)。

當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),

當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。

可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。

38.C

39.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.

由定積分的對(duì)稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則

可知應(yīng)選C.

40.C解析:

41.所以b=2。所以b=2。

42.1/21/2解析:

43.(x+1)ex本題考查了函數(shù)導(dǎo)數(shù)的知識(shí)點(diǎn)。

44.

本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.

考生只需熟記導(dǎo)數(shù)運(yùn)算的法則

45.1

46.

47.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2

48.2

49.因?yàn)椤?1dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對(duì)x的積分為。

50.(00)

51.1

52.

53.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

f'(x)=(x2)'=2x,

f"(x)=(2x)'=2.

54.5.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

解法1

解法2

55.3

56.

解析:

57.

58.

59.

本題考查的知識(shí)點(diǎn)為求二元函數(shù)的全微分.

通常求二元函數(shù)的全微分的思路為:

先求出如果兩個(gè)偏導(dǎo)數(shù)為連續(xù)函數(shù),則可得知

由題設(shè)z=ln(x2+y),令u=x2+y,可得

當(dāng)X2+y≠0時(shí),為連續(xù)函數(shù),因此有

60.(01)(0,1)解析:

61.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給級(jí)數(shù)為缺項(xiàng)情形,由于

62.e2

63.

64.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題。

65.

66.

本題考查的知識(shí)點(diǎn)為定積分計(jì)算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時(shí),u=0;當(dāng)x=1時(shí),u=2.因此

67.

68.

69.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

70.>1

71.

72.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

73.f'(0)本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于f(0)=0,f'(0)存在,因此

本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:

因?yàn)轭}設(shè)中只給出f'(0)存在,并沒(méi)有給出,f'(z)(x≠0)存在,也沒(méi)有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.

74.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.

75.本題考查的知識(shí)點(diǎn)為重要極限公式。

76.

本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.

注意若u,v可微,則

77.

78.(1,-1)

79.3本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn).

所以收斂半徑R=3.

80.(-33)(-3,3)解析:

81.(1/x)dx

82.(-24)(-2,4)解析:

83.exdx

84.1

85.eyey

解析:

86.f(x)+Cf(x)+C解析:

87.

88.1.

本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.

89.(-22)(-2,2)解析:

90.1/2

本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.

其積分區(qū)域如圖1—1陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

91.

9

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論