安徽省白澤湖中學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
安徽省白澤湖中學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
安徽省白澤湖中學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
安徽省白澤湖中學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
安徽省白澤湖中學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是虛數(shù)單位,則()A.1 B.2 C. D.2.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)3.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.4.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.5.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.6.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.7.設(shè)函數(shù)恰有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.8.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.10.()A. B. C. D.11.若函數(shù)有兩個極值點,則實數(shù)的取值范圍是()A. B. C. D.12.復(fù)數(shù)的模為().A. B.1 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.14.在一次體育水平測試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:①甲校學(xué)生成績的優(yōu)秀率大于乙校學(xué)生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號是____________.15.的展開式中的系數(shù)為__________(用具體數(shù)據(jù)作答).16.如圖是一個算法偽代碼,則輸出的的值為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.18.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.19.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項,第3項,第4項.(1)求數(shù)列和的通項公式;(2)若數(shù)列滿足,求數(shù)列的前2020項的和.20.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.22.(10分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由復(fù)數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.2.D【解析】

原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.3.D【解析】

由程序框圖確定程序功能后可得出結(jié)論.【詳解】執(zhí)行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.4.A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉(zhuǎn)化為函數(shù)求最值。5.B【解析】

根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.6.C【解析】

畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運算能力,屬于??碱}.7.C【解析】

恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時,恰有兩個極值點,即實數(shù)的取值范圍是.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.8.D【解析】

設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.9.D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.10.B【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.11.A【解析】試題分析:由題意得有兩個不相等的實數(shù)根,所以必有解,則,且,∴.考點:利用導(dǎo)數(shù)研究函數(shù)極值點【方法點睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點,再判斷導(dǎo)數(shù)為0的點的左、右兩側(cè)的導(dǎo)數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側(cè)的符號―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側(cè)的導(dǎo)數(shù)值符號相反.12.D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

取基向量,,然后根據(jù)三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實數(shù)使得,,,,,,故答案為:.【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,屬中檔題.14.②③【解析】

根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學(xué)生的理解能力和應(yīng)用能力.15.【解析】

利用二項展開式的通項公式可求的系數(shù).【詳解】的展開式的通項公式為,令,故,故的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項的系數(shù),注意利用通項公式來計算,本題屬于容易題.16.5【解析】

執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運算能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)64,65;(2);(3).【解析】

(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);(2)設(shè)“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;(3)從評定等級為“合格”和“不合格”的學(xué)生中隨機抽取10人進行座談,其中“不合格”的學(xué)生數(shù)為,“合格”的學(xué)生數(shù)為6;由題意可得,5,10,15,1,利用“超幾何分布”的計算公式即可得出概率,進而得出分布列與數(shù)學(xué)期望.【詳解】由題意知,樣本容量為,.(1)平均數(shù)為,設(shè)中位數(shù)為,因為,所以,則,解得.(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有24人,分?jǐn)?shù)在內(nèi)的學(xué)生有12人.設(shè)“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,則,所以.(3)在評定等級為“合格”和“不合格”的學(xué)生中用分層抽樣的方法抽取10人,則“不合格”的學(xué)生人數(shù)為,“合格”的學(xué)生人數(shù)為.由題意可得的所有可能取值為0,5,10,15,1.,.所以的分布列為0510151.【點睛】本題主要考查了頻率分布直方圖的性質(zhì)、分層抽樣、超幾何分布列及其數(shù)學(xué)期望,考查了計算能力,屬于中檔題.18.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)取中點,連,,根據(jù)平行四邊形,可得,進而證得平面平面,利用面面垂直的性質(zhì),得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.【點睛】本題主要考查了空間中線面位置關(guān)系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,以及合理利用“等體積法”求解是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.19.(1),;(2).【解析】

(1)根據(jù)題意同時利用等差、等比數(shù)列的通項公式即可求得數(shù)列和的通項公式;(2)求出數(shù)列的通項公式,再利用錯位相減法即可求得數(shù)列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因為①當(dāng)時,②由①②得,,即,又當(dāng)時,不滿足上式,.數(shù)列的前2020項的和設(shè)③,則④,由③④得:,所以,所以.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式、性質(zhì),錯位相減法求和,考查學(xué)生的邏輯推理能力,化歸與轉(zhuǎn)化能力及綜合運用數(shù)學(xué)知識解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學(xué)運算.是中檔題.20.(1)詳見解析;(2).【解析】

(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點,,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點,所在直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論