山西省朔州市電廠中學2021-2022學年高三數(shù)學文期末試卷含解析_第1頁
山西省朔州市電廠中學2021-2022學年高三數(shù)學文期末試卷含解析_第2頁
山西省朔州市電廠中學2021-2022學年高三數(shù)學文期末試卷含解析_第3頁
山西省朔州市電廠中學2021-2022學年高三數(shù)學文期末試卷含解析_第4頁
山西省朔州市電廠中學2021-2022學年高三數(shù)學文期末試卷含解析_第5頁
免費預覽已結(jié)束,剩余2頁可下載查看

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山西省朔州市電廠中學2021-2022學年高三數(shù)學文期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知集合,,則(

)A.

B.

C.

D.[1,2]參考答案:B2.在坐標平面內(nèi),不等式組所表示的平面區(qū)域的面積為A.2

B.

C.

D.

2參考答案:B3.若{bn}滿足約束條件,則z=x+2y的最小值為()A.3 B.4 C.7 D.2參考答案:A【考點】簡單線性規(guī)劃.【專題】計算題;對應思想;數(shù)形結(jié)合法;不等式.【分析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【解答】解:由約束條件作出可行域如圖,聯(lián)立,解得A(1,1),化目標函數(shù)z=x+2y為y=﹣,由圖可知,當直線y=﹣過A時,直線在y軸上的截距最小,z有最小值為3.故選:A.【點評】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.4.三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從後表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高幾何?譯文如下:要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,前后兩桿相距BD=1000步,使后標桿桿腳D與前標桿桿腳B與山峰腳H在同一直線上,從前標桿桿腳B退行123步到F,人眼著地觀測到島峰,A、C、F三點共線,從后標桿桿腳D退行127步到G,人眼著地觀測到島峰,A、E、G三點也共線,則山峰的高度AH=()步(古制:1步=6尺,1里=180丈=1800尺=300步)A.1250 B.1255 C.1230 D.1200參考答案:B【考點】解三角形的實際應用.【分析】根據(jù)“平行線法”證得△BCF∽△HAF、△DEG∽△HAG,然后由相似三角形的對應邊成比例即可求解線段AH的長度.【解答】解:∵AH∥BC,∴△BCF∽△HAF,∴,又∵DE∥AH,∴△DEG∽△HAG,∴,又∵BC=DE,∴,即,∴BH=30750(步)=102.5里,又∵,∴AH==1255(步).故選:B.【點評】本題考查利用數(shù)學知識解決實際問題,能夠熟練運用三角形的相似解決是關鍵.5.在直角梯形中,為腰的中點,則(

A、1

B、2

C、3

D、4參考答案:B6.已知i是虛數(shù)單位,復數(shù)在復平面上的對應點在

A.第一象限

B.第二象限

C.第三象限

D.第四象限參考答案:D,在復平面上的對應點為,為第四象限,選D.7.(文)已知全集,,,則集合為

(

)A. B. C. D.參考答案:C:因為,,所以,所以.故選C.8.有下面的試驗1)如果,那么;2)某人買彩票中獎;3)3+5〉10;4)在地球上,蘋果不抓住必然往下掉。其中是必然現(xiàn)象的有

)A、1) B、4)

C、1)3)

D、1)4)

參考答案:D9.下列函數(shù)是增函數(shù)的是A. B.C. D.參考答案:【知識點】函數(shù)的單調(diào)性B3【答案解析】B

y=tanx在給定的兩個區(qū)間上式增函數(shù),但在整個上不是增函數(shù)。為減函數(shù),為減函數(shù),故選B【思路點撥】分別確定各個區(qū)間上的單調(diào)性,找出答案。10.給出如下四個命題:①若“p∧q”為假命題,則p,q均為假命題;②命題“若,則”的否命題為“若,則”;③命題“任意”的否定是“存在”;④在△ABC中,“”是“”的充要條件.其中不正確命題的個數(shù)是(A)4

(B)3

(C)2

(D)1參考答案:二、填空題:本大題共7小題,每小題4分,共28分11.如圖,在半徑為1的扇形中,,為弧上的動點,與交于點,則的最小值是 參考答案:12.(坐標系與參數(shù)方程選做題)在極坐標系中,過點作圓的切線,則切線的極坐標方程是.

參考答案:略13.對于函數(shù),有下列4個結(jié)論:①任取,都有恒成立;②,對于一切恒成立;③函數(shù)有3個零點;④對任意,不等式恒成立.

則其中所有正確結(jié)論的序號是▲.參考答案:【知識點】分段函數(shù)的應用.B10①③④

解析:的圖象如圖所示:①的最大值為1,最小值為﹣1,∴任取,都有恒成立,正確;②f()=2f(+2)=4f(+4)=8f(+6)≠8f(+8),故不正確;③如圖所示,函數(shù)有3個零點;④對任意,不等式恒成立,則實數(shù)的取值范圍是,結(jié)合圖象,可得④正確.故答案為:①③④.【思路點撥】作出的圖象,利用圖象可得結(jié)論.14.x,y自變量滿足當時,則的最大值的變化范圍為____參考答案:(1)當x+y=S與y+2x=4有交點時,最大值在兩直線交點處取得,最小范圍是此時S=3時代入Z=7

(2)當x+y=S與y+2x=4沒有交點時最大值在B處取得代入綜上范圍是15.已知,,則=.參考答案:考點: 兩角和與差的正切函數(shù).

專題: 計算題;三角函數(shù)的求值.分析: 利用輔助角公式sinα+cosα=sin(α+),可求得sin(α+),結(jié)合α的范圍,可α+∈(,),利用同角的三角函數(shù)關系可求cos(α+),tan(α+)的值.解答: 解:∵sinα+cosα=sin(α+)=﹣,∴sin(α+)=﹣,∵α∈(,π),∴α+∈(,),∴cos(α+)=﹣=﹣.∴tan(α+)==.故答案為:.點評: 本題考查同角三角函數(shù)間的基本關系,考查了計算能力,屬于基礎題.16.函數(shù),實數(shù)互不相同,若,則的范圍為

.參考答案:略17.實數(shù)x,y滿足,若2x﹣y≥m恒成立,則實數(shù)m的取值范圍是.參考答案:(﹣∞,﹣]【考點】簡單線性規(guī)劃.【分析】首先畫出可行域,由2x﹣y≥m恒成立,即求2x﹣y的最小值,設z=2x﹣y,利用其幾何意義求最小值【解答】解:x,y滿足的平面區(qū)域如圖:設z=2x﹣y,則y=2x﹣z,當經(jīng)過圖中的A時z最小,由,得A().所以z的最小值為2×﹣=﹣所以實數(shù)m的取值范圍是(﹣∞,﹣];故答案為:(﹣∞,﹣].三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.選修4—1:幾何證明選講.如圖:AD是ΔABC的角平分線,以AD為弦的圓與BC相切于D點,與AB、AC交于E、F.求證:AE·CF=BE·AF參考答案:略19.某校高三課外興趣小組為了解高三同學高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調(diào)查,情況如下表:

打算觀看不打算觀看女生20b男生c25(1)求出表中數(shù)據(jù)b,c;(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.P(K2≥k0)0.100.050.0250.010.005K02.7063.8415.0246.6357.879附:參考答案:(1)根據(jù)分層抽樣方法抽得女生50人,男生75人,所以b=50-20=30(人),

c=75-25=50(人)

………………2分(2)因為,所以有99%的把握認為觀看2018年足球世界杯比賽與性別有關.…………7分(說明:數(shù)值代入公式1分,計算結(jié)果3分,判斷1分)(3)設5名男生分別為A、B、C、D、E,2名女生分別為a、b,由題意可知從7人中選出5人接受電視臺采訪,相當于從7人中挑選2人不接受采訪,其中一男一女,所有可能的結(jié)果有{A,B}{A,C}{A,D}{A,E}{A,a}{A,b}{B,C}{B,D}{B,E}{B,a}{B,b}{C,D}{C,E}{C,a}

{C,b}{D,E}{D,a}{D,b}{E,a}{E,b}{a,b},共21種,……9分其中恰為一男一女的包括,{A,a}{A,b}{B,a}{B,b}{C,a}{C,b}{D,a}{D,b}{E,a}{E,b},共10種.……………………10分因此所求概率為……………………12分20.(13分)已知拋物線,點P(1,-1)在拋物線C上,過點P作斜率為k1、k2的兩條直線,分別交拋物線C于異于點P的兩點A(x1,y1),B(x2,y2),且滿足k1+k2=0.

(I)求拋物線C的焦點坐標;

(II)若點M滿足,求點M的軌跡方程.參考答案:解析:(I)將P(1,-1)代入拋物線C的方程得a=-1,

∴拋物線C的方程為,即

焦點坐標為F(0,-).……4分

(II)設直線PA的方程為,

聯(lián)立方程消去y得

由………………7分

同理直線PB的方程為

聯(lián)立方程消去y得

又…………9分

設點M的坐標為(x,y),由

又…………11分

∴所求M的軌跡方程為:…………13分21.

(13分)橢圓:的兩焦點為,橢圓上存在點使(1)求橢圓離心率的取值范圍;(2)當離心率取最小值時,點到橢圓上的點的最遠距離為①求此時橢圓的方程;②設斜率為的直線與橢圓交于不同的兩點,為的中點,問兩點能否關于過、的直線對稱?若能,求出的取值范圍;若不能,請說明理由。參考答案:解析:(1)設……①將代入①得

求得

……4分(2)①時,設橢圓方程為,是橢圓上任一點,則

(?。┤?,則時,∴,此時橢圓方程為

…7分(ⅱ)若,則時,

∴,矛盾綜合得橢圓方程為

…………………9分②由得

可求得,由求得,

代入解得

………………13分22.

已知函數(shù)(,為自然對數(shù)的底數(shù)).(Ⅰ)若曲線在點處的切線平行于軸,求的值;(Ⅱ)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論