版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年福建省廈門市普通高校對口單招數(shù)學自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.B.C.D.
2.已知{<an}為等差數(shù)列,a3+a8=22,a6=7,則a5=()</aA.20B.25C.10D.15
3.A.2B.3C.4
4.下列命題中,假命題的是()A.a=0且b=0是AB=0的充分條件
B.a=0或b=0是AB=0的充分條件
C.a=0且b=0是AB=0的必要條件
D.a=0或b=0是AB=0的必要條件
5.已知a是函數(shù)f(x)=x3-12x的極小值點,則a=()A.-4B.-2C.4D.2
6.A.
B.
C.
7.A.(5,10)B.(-5,-10)C.(10,5)D.(-10,-5)
8.函數(shù)的定義域()A.[3,6]B.[-9,1]C.(-∞,3]∪[6,+∞)D.(-∞,+∞)
9.下列函數(shù)為偶函數(shù)的是A.B.y=7x
C.y=2x+1
10.A.B.C.D.R
11.己知向量a
=(2,1),b
=(-1,2),則a,b之間的位置關系為()A.平行B.不平行也不垂直C.垂直D.以上都不對
12.在等差數(shù)列{an}中,如果a3+a4+a5+a6+a7+a8=30,則數(shù)列的前10項的和S10為()A.30B.40C.50D.60
13.圓心為(1,1)且過原點的圓的方程是()A.(x-l)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
14.直線L過(-1,2)且與直線2x-3y+5=0垂直,則L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0
15.下列命題錯誤的是()A.對于兩個向量a,b(a≠0),如果有一個實數(shù),使b=a,則a與b共線
B.若|a|=|b|,則a=b
C.若a,b為兩個單位向量,則a·a=b·b
D.若a⊥b,則a·b=0
16.A.
B.
C.
17.設AB是拋物線上的兩點,O為原點,OA丄OB,A點的橫坐標是-1,則B點的橫坐標為()A.lB.4C.8D.16
18.函數(shù)在(-,3)上單調(diào)遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8
19.若一個幾何體的正視圖和側視圖是兩個全等的正方形,則這個幾何體的俯視圖不可能是()A.
B.
C.
D.
20.已知A(1,1),B(-1,5)且,則C的坐標為()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)
二、填空題(10題)21.
22.若一個球的體積為則它的表面積為______.
23.右圖是一個算法流程圖.若輸入x的值為1/16,則輸出y的值是____.
24.執(zhí)行如圖所示的程序框圖,若輸入的k=11,則輸出的S=_______.
25.
26.
27.已知△ABC中,∠A,∠B,∠C所對邊為a,b,c,C=30°,a=c=2.則b=____.
28.已知那么m=_____.
29.如圖所示,某人向圓內(nèi)投鏢,如果他每次都投入圓內(nèi),那么他投中正方形區(qū)域的概率為____。
30.(x+2)6的展開式中x3的系數(shù)為
。
三、計算題(10題)31.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
32.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
33.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
34.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
35.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
36.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
37.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
38.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
39.解不等式4<|1-3x|<7
40.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
四、簡答題(10題)41.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調(diào)性并加以證明。
42.已知平行四邊形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中點,求。
43.設等差數(shù)列的前n項數(shù)和為Sn,已知的通項公式及它的前n項和Tn.
44.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)
45.設函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調(diào)性并加以證明.
46.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
47.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由
48.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程
49.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點恰好是坐標原點,求直線l的方程.
50.化簡
五、解答題(10題)51.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過點(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長.
52.已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.(1)當直線l過圓心C時,求直線l的方程;(2)當直線l的傾斜角為45°時,求弦AB的長.
53.
54.成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5(1)求數(shù)列{bn}的通項公式;(2)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+5/4}是等比數(shù)列
55.
56.
57.
58.求函數(shù)f(x)=x3-3x2-9x+5的單調(diào)區(qū)間,極值.
59.
60.在銳角△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c(1)求c的值;(2)求sinA的值.
六、單選題(0題)61.圓心為(1,1)且過原點的圓的方程是()A.(x-l)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
參考答案
1.C
2.D由等差數(shù)列的性質(zhì)可得a3+a8=a5+a6,∴a5=22-7=15,
3.B
4.C
5.D導數(shù)在研究函數(shù)中的應用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,則x1=-2,x2=2.當x∈(-∞,-2),(2,+∞)時,f(x)>0,則f(x)單調(diào)遞增;當x∈(―2,2)時,f(x)<0,則f(x)單調(diào)遞減,∴f(x)的極小值點為a=2.
6.A
7.B
8.A
9.A
10.B
11.C
12.C
13.D圓的標準方程.圓的半徑r
14.A由于直線與2x-3y+5=0垂直,因此可以設直線方程為3x+2y+k=0,又直線L過點(-1,2),代入直線方程得3*(-1)+2*2+k=0,因此k=-1,所以直線方程為3x+2y-1=0。
15.B向量包括長度和方向,模相等方向不一定相同,所以B錯誤。
16.B
17.D
18.A
19.C幾何體的三視圖.由題意知,俯視圖的長度和寬度相等,故C不可能.
20.A
21.45
22.12π球的體積,表面積公式.
23.-2算法流程圖的運算.初始值x=1/16不滿足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.
24.15程序框圖的運算.模擬程序的運行,可得k=11,n=1,S=1不滿足條件S>11,執(zhí)行循環(huán)體,n=2,S=3,不滿足條件S>11,執(zhí)行循環(huán)體,n=3,S=6,不滿足條件S>11,執(zhí)行循環(huán)體,n=4,S=10,不滿足條件S>11,執(zhí)行循環(huán)體,N=5,S=15,此時,滿足條件S>11,退出循環(huán),輸出S的值為15.故答案為15.
25.(3,-4)
26.a<c<b
27.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
28.6,
29.2/π。
30.160
31.
32.
33.
34.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4
35.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
36.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
37.
38.
39.
40.
41.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)
42.平行四邊形ABCD,CD為AB平移所得,從B點開始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中點,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
43.(1)∵
∴又∵等差數(shù)列∴∴(2)
44.
45.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設-1<<<0∵
∴
若時
故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)
46.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,
47.(1)(2)∴又∴函數(shù)是偶函數(shù)
48.
49.
50.
51.
52.
53.
54.(1)設成等差數(shù)列的三個正數(shù)分別為a-d,a,a+d依題意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次為7-d,10,18+d依題意,有(7-d)(18+d)=100,解得d=2或d=-13,又因為成等差數(shù)列的三個數(shù)為正數(shù),所以d=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆銀川市重點中學高三英語第一學期期末達標測試試題含解析
- 票據(jù)管理制度適用范圍(3篇)
- 藥品紙箱管理制度范本(3篇)
- 設計工時管理制度范本(3篇)
- 輔材配件管理制度范本(3篇)
- 野生種質(zhì)資源圃管理制度(3篇)
- 防疫臨時駐場人員管理制度(3篇)
- 食品品質(zhì)責任管理制度內(nèi)容(3篇)
- 疾病預防與安全應急 溺水的預防與急救 課件2025-2026學年人教版初中+體育與健康七年級全一冊
- 中學學生社團財務管理制度
- 2026年藥店培訓計劃試題及答案
- 2026春招:中國煙草真題及答案
- 六年級寒假家長會課件
- 物流鐵路專用線工程節(jié)能評估報告
- 2026河南省氣象部門招聘應屆高校畢業(yè)生14人(第2號)參考題庫附答案
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 2025江蘇無錫市宜興市部分機關事業(yè)單位招聘編外人員40人(A類)備考筆試試題及答案解析
- 卵巢過度刺激征課件
- 漢服行業(yè)市場壁壘分析報告
- 重瞼手術知情同意書
- 2026華潤燃氣校園招聘(公共基礎知識)綜合能力測試題附答案解析
評論
0/150
提交評論