2022-2023學(xué)年甘肅省慶陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年甘肅省慶陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年甘肅省慶陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年甘肅省慶陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年甘肅省慶陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年甘肅省慶陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.微分方程y+y=0的通解為().A.A.

B.

C.

D.

4.A.2B.-2C.-1D.1

5.

6.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

7.A.A.3B.1C.1/3D.0

8.

9.

10.

11.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)

12.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.

B.

C.

D.

13.

14.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類的。

A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位

B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景

C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位

D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力

15.

16.

17.

18.

19.

20.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面二、填空題(20題)21.

22.函數(shù)f(x)=x2在[-1,1]上滿足羅爾定理的ξ=_________。

23.

24.

25.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=.

26.

27.二元函數(shù)z=x2+y2+1的極小值為_(kāi)______.

28.

29.微分方程dy+xdx=0的通解為y=__________.

30.31.

32.

33.設(shè),則y'=______。34.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。35.

36.37.

38.

39.

40.

三、計(jì)算題(20題)41.

42.

43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.44.求微分方程的通解.45.

46.

47.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則48.求曲線在點(diǎn)(1,3)處的切線方程.

49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

50.

51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.53.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

58.證明:

59.求微分方程y"-4y'+4y=e-2x的通解.

60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)61.

62.

63.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。

64.設(shè)函數(shù)y=xsinx,求y'.

65.設(shè)z=x2ey,求dz。

66.

67.求fe-2xdx。68.

69.70.在第Ⅰ象限內(nèi)的曲線上求一點(diǎn)M(x,y),使過(guò)該點(diǎn)的切線被兩坐標(biāo)軸所截線段的長(zhǎng)度為最小.五、高等數(shù)學(xué)(0題)71.求

六、解答題(0題)72.求曲線y=x3-3x+5的拐點(diǎn).

參考答案

1.B

2.D解析:

3.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

4.A

5.B

6.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

7.A

8.A

9.D解析:

10.A解析:

11.A

12.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.

連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則

(1)f(x)在點(diǎn)x0處必定有定義;

(2)必定存在;

(3)

由此可知所給命題C正確,A,B不正確.

注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.

本題常見(jiàn)的錯(cuò)誤是選D.這是由于考生沒(méi)有正確理解可導(dǎo)與連續(xù)的關(guān)系.

若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).

但是其逆命題不成立.

13.C

14.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類。

15.C

16.B

17.A解析:

18.D

19.B解析:

20.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。

將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。

21.

22.0

23.12x

24.25.0.

本題考查的知識(shí)點(diǎn)為極值的必要條件.

由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f(0)=0.

26.x/1=y/2=z/-127.1;本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.

可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.

28.1/61/6解析:

29.30.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

注意:可以變形,化為形式的極限.但所給極限通常可以先變形:

31.

32.33.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。

34.

35.

36.2本題考查了定積分的知識(shí)點(diǎn)。37.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

38.

39.

40.33解析:41.由一階線性微分方程通解公式有

42.

43.

44.

45.

46.

47.由等價(jià)無(wú)窮小量的定義可知48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

50.

51.

52.由二重積分物理意義知

53.

54.

列表:

說(shuō)明

55.

56.

57.

58.

59.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

60.函數(shù)的定義域?yàn)?/p>

注意

61.

62.

63.

于是由實(shí)際問(wèn)題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時(shí),所使用的鐵皮面積最小。于是由實(shí)際問(wèn)題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時(shí),所使用的鐵皮面積最小。

64.由于y=xsinx可得y'=x'sinx+x·(sinx)'=sinx+xcosx.由于y=xsinx,可得y'=x'sinx+x·(sinx)'=sinx+xcosx.

65.

66.

67.68.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.

解法1將方程兩端關(guān)于x求導(dǎo),可得

解法2將方程兩端求微分

【解題指導(dǎo)】

若y=y(tǒng)(x)由方程F(x,y)=0確定,求dy常常有兩種方法.

(1)將方程F(x,y)=0直接求微分,然后解出dy.

(2)先由方程F(x,y)=0求y,再由dy=y(tǒng)dx得出微分dy.

69.

70.本題考查的知識(shí)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論