版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)在上是減函數(shù),則實數(shù)的取值范圍是()A. B. C. D.2.在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關于x的方程有實數(shù)根的概率為()A. B. C. D.3.在中,已知是邊上一點,,,則等于()A. B. C. D.4.已知為第一象限角,,則()A. B. C. D.5.數(shù)列,…的一個通項公式是()A.B.C.D.6.已知,,則在方向上的投影為()A. B. C. D.7.若直線l:ax+by=1(a>0,b>0)平分圓x2+y2﹣x﹣2y=0,則的最小值為()A. B.2 C. D.8.已知角的頂點與原點重合,始邊與軸非負半軸重合,終邊過點,則()A. B. C. D.9.不等式的解集是A.或 B.或C. D.10.一個體積為的正三棱柱(底面為正三角形,且側棱垂直于底面的棱柱)的三視圖如圖所示,則該三棱柱的側視圖的面積為()A. B.3 C. D.12二、填空題:本大題共6小題,每小題5分,共30分。11.不等式x(2x﹣1)<0的解集是_____.12.已知向量、滿足:,,,則_________.13.已知,,若,則______.14.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________15.函數(shù)f(x)=sin22x的最小正周期是__________.16.設等差數(shù)列,的前項和分別為,,若,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.18.已知數(shù)列的前項和為,且,求數(shù)列的通項公式.19.如圖,已知是半徑為1,圓心角為的扇形,是扇形狐上的動點,點分別在半徑上,且是平行四邊形,記,四邊形的面積為,問當取何值時,最大?的最大值是多少?20.在中,,,,解三角形.21.已知三棱錐中,是邊長為的正三角形,;(1)證明:平面平面;(2)設為棱的中點,求二面角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)復合函數(shù)單調(diào)性,結合對數(shù)型函數(shù)的定義域列不等式組,解不等式組求得的取值范圍.【詳解】由于的底數(shù)為,而函數(shù)在上是減函數(shù),根據(jù)復合函數(shù)單調(diào)性同增異減可知,結合對數(shù)型函數(shù)的定義域得,解得.故選:C【點睛】本小題主要考查根據(jù)對數(shù)型復合函數(shù)單調(diào)性求參數(shù)的取值范圍,屬于基礎題.2、C【解析】
由關于x的方程有實數(shù)根,求得,再結合長度比的幾何概型,即可求解,得到答案.【詳解】由題意,關于x的方程有實數(shù)根,則滿足,解得,所以在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關于x的方程有實數(shù)根的概率為.故選:C.【點睛】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應的“幾何度量”,再求出總的基本事件對應的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力,屬于基礎題.3、A【解析】
利用向量的減法將3,進行分解,然后根據(jù)條件,進行對比即可得到結論【詳解】∵3,∴33,即43,則,∵λ,∴λ,故選A.【點睛】本題主要考查向量的基本定理的應用,根據(jù)向量的減法法則進行分解是解決本題的關鍵.4、B【解析】
由式子兩邊平方可算得,又由,即可得到本題答案.【詳解】因為,,,,所以.故選:B【點睛】本題主要考查利用同角三角函數(shù)的基本關系及誘導公式化簡求值.5、D【解析】試題分析:由題意得,可采用驗證法,分別令,即可作出選擇,只有滿足題意,故選D.考點:歸納數(shù)列的通項公式.6、A【解析】在方向上的投影為,選A.7、C【解析】
求得圓心,代入直線的方程,然后利用基本不等式求得的最小值.【詳解】圓的圓心為,由于直線平分圓,故圓心在直線上,即,所以,當且僅當時等號成立.故選:C【點睛】本小題主要考查直線和圓的位置關系,考查利用基本不等式求最小值.8、C【解析】
利用三角函數(shù)定義即可求得:,,再利用余弦的二倍角公式得解.【詳解】因為角的終邊過點,所以點到原點的距離所以,所以故選C【點睛】本題主要考查了三角函數(shù)定義及余弦的二倍角公式,考查計算能力,屬于較易題.9、C【解析】
把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中把不等式對應的一元二次方程能夠因式分解,即能夠轉化為幾個代數(shù)式的乘積形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、A【解析】
根據(jù)側視圖的寬為求出正三角形的邊長為4,再根據(jù)體積求出正三棱柱的高,再求側視圖的面積?!驹斀狻總纫晥D的寬即為俯視圖的高,即三角形的邊長為4,又側視圖的面積為:【點睛】理解:側視圖的寬即為俯視圖的高,即可求解本題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
求出不等式對應方程的實數(shù)根,即可寫出不等式的解集,得到答案.【詳解】由不等式對應方程的實數(shù)根為0和,所以該不等式的解集是.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、.【解析】
將等式兩邊平方得出的值,再利用結合平面向量的數(shù)量積運算律可得出結果.【詳解】,,,因此,,故答案為.【點睛】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.13、【解析】
首先令,分別把解出來,再利用整體換元的思想即可解決.【詳解】令所以令,所以所以【點睛】本題主要考查了整體換元的思想以及對數(shù)之間的運算和公式法解一元二次方程.整體換元的思想是高中的一個重點,也是高考??嫉膬?nèi)容需重點掌握.14、【解析】
由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點睛】本題以數(shù)陣為背景,觀察數(shù)列中項的特點,求數(shù)列通項和前項和,考查邏輯推理能力和運算求解能力,求解時要注意等差數(shù)列性質的合理運用.15、.【解析】
將所給的函數(shù)利用降冪公式進行恒等變形,然后求解其最小正周期即可.【詳解】函數(shù),周期為【點睛】本題主要考查二倍角的三角函數(shù)公式?三角函數(shù)的最小正周期公式,屬于基礎題.16、【解析】分析:首先根據(jù)等差數(shù)列的性質得到,利用分數(shù)的性質,將項的比值轉化為和的比值,從而求得結果.詳解:根據(jù)題意有,所以答案是.點睛:該題考查的是有關等差數(shù)列的性質的問題,將兩個等差數(shù)列的項的比值可以轉化為其和的比值,結論為,從而求得結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,;(3)或.【解析】
(1)運用數(shù)列的遞推式以及數(shù)列的和與通項的關系可得,再由等比數(shù)列的定義、通項公式可得結果;(2)對等式兩邊除以,結合等差數(shù)列的定義和通項公式,可得所求;(3)求得,由數(shù)列的錯位相減法求和,可得,化簡,即,對任意的成立,運用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.【詳解】(1),可得,即;時,,又,相減可得,即,則;(2)證明:,可得,可得是首項和公差均為1的等差數(shù)列,可得,即;(3),前n項和為,,相減可得,可得,,即為,即,對任意的成立,由,可得為遞減數(shù)列,即n=1時取得最大值1?2=?1,可得,即或.【點睛】“錯位相減法”求數(shù)列的和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.18、【解析】
當時,,當時,,即可得出.【詳解】∵已知數(shù)列的前項和為,且,當時,,當時,,檢驗:當時,不符合上式,【點睛】本題考查了數(shù)列遞推關系、數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎題.19、當時,最大,最大值為【解析】
設,,在中,由余弦定理,基本不等式可得,根據(jù)三角形的面積公式即可求解.【詳解】解:設,在中,由余弦定理得:,由基本不等式,,可得,當且僅當時取等號,∴,當且僅當時取等號,此時,∴當時,最大,最大值為.【點睛】本題主要考查余弦定理,基本不等式,三角形的面積公式的綜合應用,考查了計算能力和轉化思想,屬于基礎題.20、當時,,,當,,【解析】
利用已知條件通過正弦定理求出,然后利用正弦定理或余弦定理轉化求解,即可求解.【詳解】在中,,由正弦定理可得:==,因為,所以或,當時,因為,所以,從而,當時,因為,所以,從而=.【點睛】本題主要考查了三角形的解法,正弦定理以及余弦定理的應用,其中解答中熟記三角形的正弦定理與余弦定理,合理運用是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(1)見解析(2)【解析】
(1)由題意結合正弦定理可得,據(jù)此可證得平面,從而可得題中的結論;(2)在平面中,過點作,以所在的直線分別為軸建立空
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 記一次難忘的夏令營活動記事作文5篇范文
- 熱力站新員工崗位培訓工作手冊
- 藝術嘉年華活動方案
- 蓋梁施工方案培訓資料
- 保險私募基金相關制度
- 2026福建廈門市集美區(qū)濱海幼兒園非在編教職工招聘3人備考題庫及1套參考答案詳解
- 華鎣市就業(yè)創(chuàng)業(yè)促進中心2026年第一批城鎮(zhèn)公益性崗位人員招聘備考題庫及答案詳解(奪冠系列)
- 桂林市離婚協(xié)議書(2026年規(guī)范備案版)
- 2026湖南常德煙草機械有限責任公司招聘35人備考題庫及答案詳解一套
- 2024-2025學年北京市海淀區(qū)高一上學期期中考試數(shù)學試題(解析版)
- 2025至2030中國時空智能服務(LBS)行業(yè)發(fā)展動態(tài)及發(fā)展趨勢研究報告
- 透析患者營養(yǎng)風險評估與干預
- DB41/T 1354-2016 人民防空工程標識
- 山東省棗莊市薛城區(qū)2024-2025學年高二上學期期末數(shù)學試題
- 部編版道德與法治八年級上冊每課教學反思
- 電力配網(wǎng)工程各種材料重量表總
- 園林苗木的種實生產(chǎn)
- 【網(wǎng)絡謠言的治理路徑探析(含問卷)14000字(論文)】
- 2024年新安全生產(chǎn)法培訓課件
- 卷閘門合同書
評論
0/150
提交評論