2023屆北京市二十二中數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第1頁
2023屆北京市二十二中數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第2頁
2023屆北京市二十二中數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第3頁
2023屆北京市二十二中數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第4頁
2023屆北京市二十二中數(shù)學(xué)高一下期末預(yù)測(cè)試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,則與夾角的大小為()A. B. C. D.2.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形3.把十進(jìn)制數(shù)化為二進(jìn)制數(shù)為A. B.C. D.4.在銳角中,若,則角的大小為()A.30° B.45° C.60° D.75°5.利用隨機(jī)模擬方法可估計(jì)無理數(shù)π的數(shù)值,為此設(shè)計(jì)右圖所示的程序框圖,其中rand()表示產(chǎn)生區(qū)間(0,1)上的隨機(jī)數(shù),P是s與n的比值,執(zhí)行此程序框圖,輸出結(jié)果P的值趨近于()A.π B.π4 C.π26.直線的傾斜角是()A. B. C. D.7.已知都是正數(shù),且,則的最小值等于A. B.C. D.8.已知函數(shù),在下列函數(shù)圖像中,不是函數(shù)的圖像的是()A. B. C. D.9.在區(qū)間上隨機(jī)地取一個(gè)數(shù).則的值介于0到之間的概率為().A. B. C. D.10.若將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,平移后的圖象關(guān)于點(diǎn)對(duì)稱,則函數(shù)在上的最小值是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若存在實(shí)數(shù)使得關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是____.12.已知,,,則的最小值為__________.13.用數(shù)學(xué)歸納法證明“”,在驗(yàn)證成立時(shí),等號(hào)左邊的式子是______.14.已知函數(shù)的定義域?yàn)椋瑒t實(shí)數(shù)的取值范圍為_____.15.設(shè)奇函數(shù)的定義域?yàn)镽,且對(duì)任意實(shí)數(shù)滿足,若當(dāng)∈[0,1]時(shí),,則____.16.已知是等比數(shù)列,且,,那么________________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖半圓的直徑為4,為直徑延長(zhǎng)線上一點(diǎn),且,為半圓周上任一點(diǎn),以為邊作等邊(、、按順時(shí)針方向排列)(1)若等邊邊長(zhǎng)為,,試寫出關(guān)于的函數(shù)關(guān)系;(2)問為多少時(shí),四邊形的面積最大?這個(gè)最大面積為多少?18.設(shè)的內(nèi)角為所對(duì)的邊分別為,且.(1)求角的大??;(2)若,求的周長(zhǎng)的取值范圍.19.求經(jīng)過直線:與直線:的交點(diǎn),且分別滿足下列條件的直線方程.(Ⅰ)與直線平行;(Ⅱ)與直線垂直.20.某菜農(nóng)有兩段總長(zhǎng)度為米的籬笆及,現(xiàn)打算用它們和兩面成直角的墻、圍成一個(gè)如圖所示的四邊形菜園(假設(shè)、這兩面墻都足夠長(zhǎng))已知(米),,,設(shè),四邊形的面積為.(1)將表示為的函數(shù),并寫出自變量的取值范圍;(2)求出的最大值,并指出此時(shí)所對(duì)應(yīng)的值.21.已知函數(shù)(其中).(1)當(dāng)時(shí),求不等式的解集;(2)若關(guān)于的不等式恒成立,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

。分別求出,,,利用即可得出答案.【詳解】設(shè)與的夾角為故選:D【點(diǎn)睛】本題主要考查了求向量的夾角,屬于基礎(chǔ)題.2、A【解析】

由可得四邊形為平行四邊形,由·=0得四邊形的對(duì)角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對(duì)角線互相垂直,∴平行四邊形為菱形.故選A.【點(diǎn)睛】本題考查向量相等和向量數(shù)量積的的應(yīng)用,解題的關(guān)鍵是正確理解有關(guān)的概念,屬于基礎(chǔ)題.3、C【解析】選C.4、B【解析】

直接利用正弦定理計(jì)算得到答案.【詳解】根據(jù)正弦定理得到:,故,是銳角三角形,故.故選:.【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.5、B【解析】

根據(jù)程序框圖可知由幾何概型計(jì)算出x,y任?。?,1)上的數(shù)時(shí)落在x2【詳解】解:根據(jù)程序框圖可知P為頻率,它趨近于在邊長(zhǎng)為1的正方形中隨機(jī)取一點(diǎn)落在扇形內(nèi)的的概率π×故選:B【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是程序框圖,根據(jù)已知中的程序框圖分析出程序的功能,并將問題轉(zhuǎn)化為幾何概型問題是解答本題的關(guān)鍵,屬于基礎(chǔ)題.6、B【解析】

先求斜率,即傾斜角的正切值,易得.【詳解】,可知,即,故選B【點(diǎn)睛】一般直線方程求傾斜角將直線轉(zhuǎn)換為斜截式直線方程易得斜率,然后再根據(jù)直線的斜率等于傾斜角的正切值易得傾斜角,屬于簡(jiǎn)單題目.7、C【解析】

,故選C.8、C【解析】

根據(jù)冪函數(shù)圖像不過第四象限選出選項(xiàng).【詳解】函數(shù)為冪函數(shù),圖像不過第四象限,所以C中函數(shù)圖像不是函數(shù)的圖像.故選:C.【點(diǎn)睛】本小題主要考查冪函數(shù)圖像不過第四象限,屬于基礎(chǔ)題.9、D【解析】

由,得.由函數(shù)的圖像知,使的值介于0到之間的落在和之內(nèi).于是,所求概率為.故答案為D10、C【解析】

由題意得,故得平移后的解析式為,根據(jù)所的圖象關(guān)于點(diǎn)對(duì)稱可求得,從而可得,進(jìn)而可得所求最小值.【詳解】由題意得,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度所得圖象對(duì)應(yīng)的解析式為,因?yàn)槠揭坪蟮膱D象關(guān)于點(diǎn)對(duì)稱,所以,故,又,所以.所以,由得,所以當(dāng)或,即或時(shí),函數(shù)取得最小值,且最小值為.故選C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的綜合應(yīng)用,解題的關(guān)鍵是求出參數(shù)的值,容易出現(xiàn)的錯(cuò)誤是函數(shù)圖象平移時(shí)弄錯(cuò)平移的方向和平移量,此時(shí)需要注意在水平方向上的平移或伸縮只是對(duì)變量而言的.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先求得的取值范圍,將題目所給不等式轉(zhuǎn)化為含的絕對(duì)值不等式,對(duì)分成三種情況,結(jié)合絕對(duì)值不等式的解法和不等式恒成立的思想,求得的取值范圍.【詳解】由于,故可化簡(jiǎn)得恒成立.當(dāng)時(shí),顯然成立.當(dāng)時(shí),可得,,可得且,可得,即,解得.當(dāng)時(shí),可得,可得且,可得,即,解得.綜上所述,的取值范圍是.【點(diǎn)睛】本小題主要考查三角函數(shù)的值域,考查含有絕對(duì)值不等式恒成立問題,考查存在性問題的求解策略,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.12、25【解析】

變形后,利用基本不等式可得.【詳解】當(dāng)且僅當(dāng),即,時(shí)取等號(hào).故答案為:25【點(diǎn)睛】本題考查了利用基本不等式求最值,屬于基礎(chǔ)題.13、【解析】

根據(jù)左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因?yàn)樽筮叺氖阶邮菑拈_始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點(diǎn)睛】項(xiàng)數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯(cuò)點(diǎn),要使問題順利得到解決,關(guān)鍵是注意兩點(diǎn):一是首尾兩項(xiàng)的變化規(guī)律;二是相鄰兩項(xiàng)之間的變化規(guī)律.14、【解析】

根據(jù)對(duì)數(shù)的真數(shù)對(duì)于0,再結(jié)合不等式即可解決.【詳解】函數(shù)的定義域?yàn)榈葍r(jià)于對(duì)于任意的實(shí)數(shù),恒成立當(dāng)時(shí)成立當(dāng)時(shí),等價(jià)于綜上可得【點(diǎn)睛】本題主要考查了函數(shù)的定義域以及不等式恒成立的問題,函數(shù)的定義域常考的由1、,2、,3、.屬于基礎(chǔ)題.15、【解析】

根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉(zhuǎn)變到給定區(qū)間計(jì)算函數(shù)值.【詳解】因?yàn)?,所以,所以,又因?yàn)?,所以,則,故,又因?yàn)槭瞧婧瘮?shù),所以,則.【點(diǎn)睛】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達(dá)式,記住一個(gè)原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.16、【解析】

先根據(jù)等比數(shù)列性質(zhì)化簡(jiǎn)方程,再根據(jù)平方性質(zhì)得結(jié)果.【詳解】∵是等比數(shù)列,且,,∴,即,則.【點(diǎn)睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)θ=時(shí),四邊形OACB的面積最大,其最大面積為.【解析】

(1)根據(jù)余弦定理可求得(2)先表示出△ABC的面積及△OAB的面積,進(jìn)而表示出四邊形OACB的面積,并化簡(jiǎn)函數(shù)的解析式為正弦型函數(shù)的形式,再結(jié)合正弦型函數(shù)最值的求法進(jìn)行求解.【詳解】(1)由余弦定理得則(2)四邊形OACB的面積=△OAB的面積+△ABC的面積則△ABC的面積△OAB的面積?OA?OB?sinθ?2?4?sinθ=4sinθ四邊形OACB的面積4sinθ=sin(θ﹣)∴當(dāng)θ﹣=,即θ=時(shí),四邊形OACB的面積最大,其最大面積為.【點(diǎn)睛】本題考查利用正余弦定理求解面積最值,其中準(zhǔn)確列出面積表達(dá)式是關(guān)鍵,考查化簡(jiǎn)求值能力,是中檔題18、(1);(2).【解析】試題分析:(1)已知,由余弦定理角化邊得,再由余弦定理可得角的值;(2)根據(jù)與,由正弦定理求得,,結(jié)合代入到的周長(zhǎng)表達(dá)式,利用三角恒等變換化簡(jiǎn)得到的周長(zhǎng)關(guān)于角的三角函數(shù),再根據(jù)正弦函數(shù)的圖象與性質(zhì),即可求解周長(zhǎng)的取值范圍.試題解析:(1),由余弦定理,得,,∵.(2).由正弦定理,得,同理可得,的周長(zhǎng),,的周長(zhǎng),故的周長(zhǎng)的取值范圍為.點(diǎn)睛:在解三角形的范圍問題時(shí)往往要運(yùn)用正弦定理或余弦定理轉(zhuǎn)化為角度的范圍問題,這樣可以利用輔助角公式進(jìn)行化簡(jiǎn),再根據(jù)角的范圍求得最后的結(jié)果.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)先求得直線與直線的交點(diǎn)坐標(biāo).根據(jù)平行直線的斜率關(guān)系得與平行直線的斜率,再由點(diǎn)斜式即可求得直線方程.(Ⅱ)根據(jù)垂直直線的斜率關(guān)系得與垂直的直線斜率,再由點(diǎn)斜式即可求得直線方程.【詳解】解方程組得,所以直線與直線的交點(diǎn)是(Ⅰ)直線,可化為由題意知與直線平行則直線的斜率為又因?yàn)檫^所以由點(diǎn)斜式方程可得化簡(jiǎn)得所以與直線平行且過的直線方程為.(Ⅱ)直線的斜率為則由垂直時(shí)直線的斜率乘積為可知直線的斜率為由題意知該直線經(jīng)過點(diǎn),所以由點(diǎn)斜式方程可知化簡(jiǎn)可得所以與直線垂直且過的直線方程為.【點(diǎn)睛】本題考查了直線平行與垂直時(shí)的斜率關(guān)系,由點(diǎn)斜式求方程的用法,屬于基礎(chǔ)題.20、(1),其中;(2)當(dāng)時(shí),取得最大值.【解析】

(1)在中,利用正弦定理將、用表示,然后利用三角形的面積公式可求出關(guān)于的表達(dá)式,結(jié)合實(shí)際問題求出的取值范圍;(2)利用(1)中的關(guān)于的表達(dá)式得出的最大值,并求出對(duì)應(yīng)的的值.【詳解】(1)在中,由正弦定理得,所以,,則的面積為,因此,,其中;(2)由(1)知,.,,當(dāng)時(shí),即當(dāng)時(shí),四邊形的面積取得最大值.【點(diǎn)睛】本題考查了正弦定理、三角形的面積公式、兩角和與差的正弦公式、二倍角公式以及三角函數(shù)的基本性質(zhì),在利用三角函數(shù)進(jìn)行求解時(shí),要利用三角恒等變換思想將三角函數(shù)解析式化簡(jiǎn),考查推理能力與計(jì)算能力,屬于中等題.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論