版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出A. B. C. D.2.已知,,,則,,的大小關(guān)系為()A. B. C. D.3.圓的圓心坐標(biāo)和半徑分別是()A.,2 B.,1 C.,2 D.,14.已知數(shù)列是各項均為正數(shù)且公比不等于的等比數(shù)列.對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”.現(xiàn)有定義在上的如下函數(shù):①;②;③;④,則為“保比差數(shù)列函數(shù)”的所有序號為()A.①② B.③④ C.①②④ D.②③④5.矩形ABCD中,,,則實數(shù)()A.-16 B.-6 C.4 D.6.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.807.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.設(shè)m>1,在約束條件y≥xA.1,1+2C.(1,3) D.(3,+∞)9.如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則與平面所成的角為()A. B. C. D.10.若某群體中的成員只用現(xiàn)金支付的概率為0.45,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為0.15,則不用現(xiàn)金支付的概率為A.0.3 B.0.4 C.0.6 D.0.7二、填空題:本大題共6小題,每小題5分,共30分。11.從集合A={-1,1,2}中隨機選取一個數(shù)記為k,從集合B={-2,1,2}中隨機選取一個數(shù)記為b,則直線y=kx+b不經(jīng)過第三象限的概率為_____.12.函數(shù)f(x)=sin22x的最小正周期是__________.13.函數(shù)在區(qū)間上的最大值為,則的值是_____________.14.在等差數(shù)列中,若,則的前13項之和等于______.15.已知的圓心角所對的弧長等于,則該圓的半徑為______.16.已知平行四邊形的周長為,,則平行四邊形的面積是_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,連接.(1)求證:;(2)點是上一點,若平面,則為何值?并說明理由.(3)若,求二面角的余弦值.18.已知某公司生產(chǎn)某款手機的年固定成本為400萬元,每生產(chǎn)1萬部還需另投入160萬元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機x(x≥40)萬部且并全部銷售完,每萬部的收入為R(x)萬元,且R(x)=74000(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(萬部)的函數(shù)關(guān)系式;(2)當(dāng)年產(chǎn)量為多少萬部時,公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.19.(1)從某廠生產(chǎn)的一批零件1000個中抽取20個進(jìn)行研究,應(yīng)采用什么抽樣方法?(2)對(1)中的20個零件的直徑進(jìn)行測量,得到下列不完整的頻率分布表:(單位:mm)分組頻數(shù)頻率268合計201①完成頻率分布表;②畫出其頻率分布直方圖.20.如圖,在四棱錐中,平面平面,四邊形為矩形,,點,分別是,的中點.求證:(1)直線∥平面;(2)平面平面.21.在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,且,.(1)求數(shù)列和的通項公式;(2)令,設(shè)數(shù)列的前項和為,求()的最大值與最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先確定流程圖所實現(xiàn)的功能,然后利用裂項求和的方法即可確定輸出的數(shù)值.【詳解】由流程圖可知,程序輸出的值為:,即.故選B.【點睛】本題主要考查流程圖功能的識別,裂項求和的方法等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.2、D【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】解:因為,,所以,,的大小關(guān)系為.故選:D.【點睛】本題考查三個數(shù)的大小比較,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,屬于基礎(chǔ)題.3、B【解析】
將圓的一般方程配成標(biāo)準(zhǔn)方程,由此求得圓心和半徑.【詳解】由,得,所以圓心為,半徑為.【點睛】本小題主要考查圓的一般方程化為標(biāo)準(zhǔn)方程,考查圓心和半徑的求法,屬于基礎(chǔ)題.4、C【解析】
①,為“保比差數(shù)列函數(shù)”;②,為“保比差數(shù)列函數(shù)”;③不是定值,不是“保比差數(shù)列函數(shù)”;④,是“保比差數(shù)列函數(shù)”,故選C.考點:等差數(shù)列的判定及對數(shù)運算公式點評:數(shù)列,若有是定值常數(shù),則是等差數(shù)列5、B【解析】
根據(jù)題意即可得出,從而得出,進(jìn)行數(shù)量積的坐標(biāo)運算即可求出實數(shù).【詳解】據(jù)題意知,,,.故選:.【點睛】考查向量垂直的充要條件,以及向量數(shù)量積的坐標(biāo)運算,屬于容易題.6、D【解析】
,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.7、D【解析】
由幾何體的三視圖得該幾何體是一個底面半徑,高的扣在平面上的半圓柱,由此能求出該幾何體的體積【詳解】由幾何體的三視圖得:
該幾何體是一個底面半徑,高的放在平面上的半圓柱,如圖,
故該幾何體的體積為:故選:D【點睛】本題考查幾何體的體積的求法,考查幾何體的三視圖等基礎(chǔ)知識,考查推理能力與計算能力,是中檔題.8、A【解析】試題分析:∵,故直線與直線交于點,目標(biāo)函數(shù)對應(yīng)的直線與直線垂直,且在點,取得最大值,其關(guān)系如圖所示:即,解得,又∵,解得,選:A.考點:簡單線性規(guī)劃的應(yīng)用.【方法點睛】本題考查的知識點是簡單線性規(guī)劃的應(yīng)用,我們可以判斷直線的傾斜角位于區(qū)間上,由此我們不難判斷出滿足約束條件的平面區(qū)域的形狀,其中根據(jù)平面直線方程判斷出目標(biāo)函數(shù)對應(yīng)的直線與直線垂直,且在點取得最大值,并由此構(gòu)造出關(guān)于的不等式組是解答本題的關(guān)鍵.9、A【解析】
取的中點,連接、,作,垂足為點,證明平面,于是得出直線與平面所成的角為,然后利用銳角三角函數(shù)可求出.【詳解】如下圖所示,取的中點,連接、,作,垂足為點,是邊長為的等邊三角形,點為的中點,則,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直線與平面所成的角為,易知,在中,,,,,,即直線與平面所成的角為,故選A.【點睛】本題考查直線與平面所成角的計算,求解時遵循“一作、二證、三計算”的原則,一作的是過點作面的垂線,有時也可以通過等體積法計算出點到平面的距離,利用該距離與線段長度的比值作為直線與平面所成角的正弦值,考查計算能力與推理能力,屬于中等題.10、B【解析】
分析:由公式計算可得詳解:設(shè)事件A為只用現(xiàn)金支付,事件B為只用非現(xiàn)金支付,則因為所以,故選B.點睛:本題主要考查事件的基本關(guān)系和概率的計算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意,基本事件總數(shù)為3×3=9,其中滿足直線y=kx+b不經(jīng)過第三象限的,即滿足有k=-1,b=1或k=-1,b=2兩種,故所求的概率為.12、.【解析】
將所給的函數(shù)利用降冪公式進(jìn)行恒等變形,然后求解其最小正周期即可.【詳解】函數(shù),周期為【點睛】本題主要考查二倍角的三角函數(shù)公式?三角函數(shù)的最小正周期公式,屬于基礎(chǔ)題.13、【解析】
利用同角三角函數(shù)平方關(guān)系,易將函數(shù)化為二次型的函數(shù),結(jié)合余弦函數(shù)的性質(zhì),及函數(shù)在上的最大值為1,易求出的值.【詳解】函數(shù)又函數(shù)在上的最大值為1,≤0,又,且在上單調(diào)遞增,所以即.故答案為:【點睛】本題考查的知識點是三角函數(shù)的最值,其中利用同角三角函數(shù)平方關(guān)系,將函數(shù)化為二次型的函數(shù),是解答本題的關(guān)鍵,屬于中檔題.14、【解析】
根據(jù)題意,以及等差數(shù)列的性質(zhì),先得到,再由等差數(shù)列的求和公式,即可求出結(jié)果.【詳解】因為是等差數(shù)列,,所以,即,記前項和為,則.故答案為:【點睛】本題主要考查等差數(shù)列前項和的基本量的運算,熟記等差數(shù)列的性質(zhì)以及求和公式即可,屬于基礎(chǔ)題型.15、【解析】
先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【點睛】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.16、【解析】
設(shè),根據(jù)條件可以求出,兩邊平方可以得到關(guān)系式,由余弦定理可以表示出,把代入得到的關(guān)系式,聯(lián)立求出的值,過作垂直于,設(shè),則可以表示,利用勾股定理,求出的值,確定長,即求出平行四邊形的面積【詳解】設(shè)又,由余弦定理將代入,得到將(2)代入(1)得到可以解得:(另一種情況不影響結(jié)果),過作垂直于,設(shè),則,所以填寫【點睛】幾何題如果關(guān)系量理清不了,可以嘗試作圖,引入相鄰邊的參數(shù),通過方程把參數(shù)求出,平行四邊形問題可以通過轉(zhuǎn)化變?yōu)槿切螁栴},進(jìn)而把問題簡單化.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2),理由見詳解;(3).【解析】
(1)通過證明EF平面PBD,即可證明;(2)通過線面平行,將問題轉(zhuǎn)化為線線平行,在平面圖形中根據(jù)線段比例進(jìn)而求解;(3)根據(jù)(1)(2)所得,找到二面角的平面角,然后再進(jìn)行求解.【詳解】(1)證明:因為四邊形ABCD為正方形,故DAAE,DC,即折疊后的DP又因為平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即證.(2)連接BD交EF于O,連接OM,作圖如下因為//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分別是正方形ABCD兩邊的中點,故可得即為所求.(3)過M作MH垂直于BD,垂足為H,連接OP,作圖如下:由(1)可知:EF平面PBD,因為MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又因為BDEF,故即為所求二面角的平面角.設(shè)正方形ABCD的邊長為4,因為,故PM=1,故在中,PM=1,EP=2,根據(jù)勾股定理可得ME同理:在中,PM=1,PF=2,根據(jù)勾股定理可得MF=又EF=故在等腰三角形EMF中,因為O是EF的中點,故MO=.由(1)可知,PD平面PEF,又OP平面PEF,故PDOP,則,故可得,又在中,PE=PF=2,EF=2,O為斜邊EF上的中點,故OP=,又因為MD=3,OD=故可解得MH=故在中,MH=1,MO=,由勾股定理可得OH=故.故二面角的余弦值為.【點睛】本題考查由線面垂直推證線線垂直,由線面平行得到線線平行,以及二面角的求解,屬綜合中檔題.18、(1)W=73600-400000x-160x,(x≥40);(2)當(dāng)x=50【解析】
(1)根據(jù)題意,即可求解利潤關(guān)于產(chǎn)量的關(guān)系式為W=(2)由(1)的關(guān)系式,利用基本不等式求得最大值,即可求解最大利潤.【詳解】(1)由題意,可得利潤W關(guān)于年產(chǎn)量x的函數(shù)關(guān)系式為W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,當(dāng)且僅當(dāng)400000x=160,即x=50時取等號,所以當(dāng)x=50時,【點睛】本題主要考查了函數(shù)的實際應(yīng)用問題,以及利用基本不等式求最值,其中解答中認(rèn)真審題,得出利潤W關(guān)于年產(chǎn)量x的函數(shù)關(guān)系式,再利用基本不等式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.19、(1)系統(tǒng)抽樣;(2)①分布表見解析;②直方圖見解析.【解析】
(1)因需要研究的個體很多,且差異不明顯,適宜用系統(tǒng)抽樣.(2)①直接計算頻率即可.②根據(jù)①中計算出的數(shù)據(jù),用每一組的頻率/組距作為縱坐標(biāo),即可做出頻率分布直方圖.【詳解】某廠生產(chǎn)的一批零件1000個,差異不明顯,且因需要研究的個體很多.
所以適宜用系統(tǒng)抽樣.(2)①頻率分布表為分組頻數(shù)頻率20.160.380.440.2合計201②頻率分布直方圖為.分組頻數(shù)頻率頻率/組距20.10.0260.30.0680.40.0840.20.04合計201【點睛】本題考查頻率分布表和根據(jù)頻率分布表繪制頻率分布直方圖,屬于基礎(chǔ)題.20、(1)見解析(2)見解析【解析】
(1)取中點,連接,,證得,利用線面平行的判定定理,即可證得直線∥平面;(2)利用線面垂直的判定定理,證得,再利用面面垂直的判定定理,即可得到平面平面.【詳解】(1)取中點,連接,.在中,,分別為,中點,則且,又四邊形為矩形,為中點,且,所以,故四邊形為平行四邊形,從而,又,,所以直線.(2)因為矩形,所以,又平面,面,,所以,又,則,又,,所以,又,所以平面平面.【點睛】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教學(xué)人文素養(yǎng)培訓(xùn)
- 2026年征兵文化素質(zhì)提升題庫含答案
- 太陽介紹教學(xué)
- 2026年電商行業(yè)運營崗位筆試備考題及答案解析
- (正式版)DB3311∕T 52-2016 《低海拔高溫香菇栽培技術(shù)規(guī)程》
- 2026年監(jiān)察法實施條例競賽模擬練習(xí)題及完整答案
- 2026年校長晉升選拔標(biāo)準(zhǔn)試題及答案
- 2026年鐵路局本科面試基礎(chǔ)能力試題及解析
- 內(nèi)江2025下半年四川內(nèi)江隆昌市國有企業(yè)招聘39人筆試歷年典型考點題庫附帶答案詳解
- 其他地區(qū)2025年下半年新疆塔城地區(qū)急需緊缺人才引進(jìn)筆試歷年難易錯考點試卷帶答案解析
- 水利水電工程生產(chǎn)安全重大事故隱患判定導(dǎo)則(2025版)解讀課件
- 《養(yǎng)老機構(gòu)認(rèn)知障礙老年人照護(hù)指南》
- 2025年中國糖尿病腎臟病基層管理指南(全文)
- 流動酒席商業(yè)計劃書
- 2026年伊春職業(yè)學(xué)院單招綜合素質(zhì)考試必刷測試卷必考題
- 2025年黨務(wù)工作者試題及答案
- 藥物臨床試驗計算機化系統(tǒng)和電子數(shù)據(jù)指導(dǎo)原則
- 【語文】上海市靜安區(qū)第一中心小學(xué)小學(xué)三年級上冊期末試卷(含答案)
- 花鏡栽植施工方案
- 南寧市七年級上學(xué)期期末生物試題及答案
- 2025年智慧工地行業(yè)分析報告及未來發(fā)展趨勢預(yù)測
評論
0/150
提交評論