版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某共享單車前a公里1元,超過a公里的,每公里2元,若要使使用該共享單車50%的人只花1元錢,a應(yīng)該要取什么數(shù)()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差2.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()年齡(歲)1213141516人數(shù)12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲3.剪紙是水族的非物質(zhì)文化遺產(chǎn)之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.4.如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB,AD=2,BD=6,則邊AC的長為()A.2 B.4 C.6 D.85.關(guān)于x的一元二次方程x2-2x-(m-1)=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.且 B. C.且 D.6.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.7.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點C和點D,則k的值為()A. B. C. D.8.下列等式正確的是()A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1C.a(chǎn)3+a3=a6 D.(ab)2=a9.下列說法中,錯誤的是()A.兩個全等三角形一定是相似形B.兩個等腰三角形一定相似C.兩個等邊三角形一定相似D.兩個等腰直角三角形一定相似10.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是()A.B.C.D.11.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.312.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片(大小、形狀完全相同)中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.14.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.15.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.16.如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以O(shè)A、OB為直徑作半圓,則圖中陰影部分的面積為_____.17.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點D為AB的中點,以點D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點C,以點D為頂點,作90°的∠EDF,與半圓交于點E,F(xiàn),則圖中陰影部分的面積是____.18.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一根電線桿PQ直立在山坡上,從地面的點A看,測得桿頂端點P的仰角為45°,向前走6m到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60°和30°,求電線桿PQ的高度.(結(jié)果保留根號).20.(6分)探究:在一次聚會上,規(guī)定每兩個人見面必須握手,且只握手1次若參加聚會的人數(shù)為3,則共握手次:;若參加聚會的人數(shù)為5,則共握手次;若參加聚會的人數(shù)為n(n為正整數(shù)),則共握手次;若參加聚會的人共握手28次,請求出參加聚會的人數(shù).拓展:嘉嘉給琪琪出題:“若線段AB上共有m個點(含端點A,B),線段總數(shù)為30,求m的值.”琪琪的思考:“在這個問題上,線段總數(shù)不可能為30”琪琪的思考對嗎?為什么?21.(6分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關(guān)于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.22.(8分)如圖,在菱形ABCD中,,點E在對角線BD上.將線段CE繞點C順時針旋轉(zhuǎn),得到CF,連接DF.(1)求證:BE=DF;(2)連接AC,若EB=EC,求證:.23.(8分)我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)24.(10分)拋物線:與軸交于,兩點(點在點左側(cè)),拋物線的頂點為.(1)拋物線的對稱軸是直線________;(2)當(dāng)時,求拋物線的函數(shù)表達式;(3)在(2)的條件下,直線:經(jīng)過拋物線的頂點,直線與拋物線有兩個公共點,它們的橫坐標分別記為,,直線與直線的交點的橫坐標記為,若當(dāng)時,總有,請結(jié)合函數(shù)的圖象,直接寫出的取值范圍.25.(10分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。?)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.26.(12分)計算:解方程:27.(12分)已知:如圖,在四邊形ABCD中,AD∥BC,點E為CD邊上一點,AE與BE分別為∠DAB和∠CBA的平分線.(1)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)在(1)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sin∠AGF=45
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】解:根據(jù)中位數(shù)的意義,故只要知道中位數(shù)就可以了.故選B.2、D【解析】
眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】解:數(shù)據(jù)1出現(xiàn)了5次,最多,故為眾數(shù)為1;按大小排列第6和第7個數(shù)均是1,所以中位數(shù)是1.故選D.【點睛】本題主要考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).3、D【解析】
根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【點睛】此題主要考查了中心對稱圖形,關(guān)鍵是掌握中心對稱圖形的定義.4、B【解析】
證明△ADC∽△ACB,根據(jù)相似三角形的性質(zhì)可推導(dǎo)得出AC2=AD?AB,由此即可解決問題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點睛】本題考查相似三角形的判定和性質(zhì)、解題的關(guān)鍵是正確尋找相似三角形解決問題.5、A【解析】
根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關(guān)于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個不相等的實數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點睛】本題考查了根的判別式,牢記“當(dāng)△>1時,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.6、B【解析】
先利用三角函數(shù)求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.7、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設(shè)BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.8、B【解析】
(1)根據(jù)完全平方公式進行解答;(2)根據(jù)合并同類項進行解答;(3)根據(jù)合并同類項進行解答;(4)根據(jù)冪的乘方進行解答.【詳解】解:A、(a+b)2=a2+2ab+b2,故此選項錯誤;B、3n+3n+3n=3n+1,正確;C、a3+a3=2a3,故此選項錯誤;D、(ab)2=a2b,故此選項錯誤;故選B.【點睛】本題考查整數(shù)指數(shù)冪和整式的運算,解題關(guān)鍵是掌握各自性質(zhì).9、B【解析】
根據(jù)相似圖形的定義,結(jié)合選項中提到的圖形,對選項一一分析,選出正確答案.【詳解】解:A、兩個全等的三角形一定相似,正確;B、兩個等腰三角形一定相似,錯誤,等腰三角形的形狀不一定相同;C、兩個等邊三角形一定相似;正確,等邊三角形形狀相同,只是大小不同;D、兩個等腰直角三角形一定相似,正確,等腰直角三角形形狀相同,只是大小不同.故選B.【點睛】本題考查的是相似形的定義,聯(lián)系圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.特別注意,本題是選擇錯誤的,一定要看清楚題.10、B【解析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當(dāng)0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當(dāng)2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-11、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識,準確添加輔助線,掌握折疊前后圖形的對應(yīng)關(guān)系是解題的關(guān)鍵.12、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據(jù)概率的公式進行計算即可.【詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【點睛】考查概率的計算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.14、5.【解析】
試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.15、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.16、﹣1.【解析】試題分析:假設(shè)出扇形半徑,再表示出半圓面積,以及扇形面積,進而即可表示出兩部分P,Q面積相等.連接AB,OD,根據(jù)兩半圓的直徑相等可知∠AOD=∠BOD=45°,故可得出綠色部分的面積=S△AOD,利用陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色,故可得出結(jié)論.解:∵扇形OAB的圓心角為90°,扇形半徑為2,∴扇形面積為:=π(cm2),半圓面積為:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,連接AB,OD,∵兩半圓的直徑相等,∴∠AOD=∠BOD=45°,∴S綠色=S△AOD=×2×1=1(cm2),∴陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色=π﹣﹣1=﹣1(cm2).故答案為﹣1.考點:扇形面積的計算.17、π﹣1.【解析】
連接CD,作DM⊥BC,DN⊥AC,證明△DMG≌△DNH,則S四邊形DGCH=S四邊形DMCN,求得扇形FDE的面積,則陰影部分的面積即可求得.【詳解】連接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,點D為AB的中點,∴DC=AB=1,四邊形DMCN是正方形,DM=.則扇形FDE的面積是:=π.∵CA=CB,∠ACB=90°,點D為AB的中點,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四邊形DGCH=S四邊形DMCN=1.則陰影部分的面積是:π﹣1.故答案為π﹣1.【點睛】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵.18、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設(shè),則?!唿cE是邊CD的中點,∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!??!嘣赗t△ABG中,由勾股定理得:,即?!??!啵ㄖ蝗≌担?。∴。三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(6+)米【解析】
根據(jù)已知的邊和角,設(shè)CQ=x,BC=QC=x,PC=BC=3x,根據(jù)PQ=BQ列出方程求解即可.【詳解】解:延長PQ交地面與點C,由題意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,設(shè)CQ=x,則在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,則PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,則電線桿PQ高為(6+)米.【點睛】此題重點考察學(xué)生對解直角三角形的理解,掌握解直角三角形的方法是解題的關(guān)鍵.20、探究:(1)3,1;(2);(3)參加聚會的人數(shù)為8人;拓展:琪琪的思考對,見解析.【解析】
探究:(1)根據(jù)握手次數(shù)=參會人數(shù)×(參會人數(shù)-1)÷2,即可求出結(jié)論;
(2)由(1)的結(jié)論結(jié)合參會人數(shù)為n,即可得出結(jié)論;(3)由(2)的結(jié)論結(jié)合共握手28次,即可得出關(guān)于n的一元二次方程,解之取其正值即可得出結(jié)論;拓展:將線段數(shù)當(dāng)成握手數(shù),頂點數(shù)看成參會人數(shù),由(2)的結(jié)論結(jié)合線段總數(shù)為2,即可得出關(guān)于m的一元二次方程,解之由該方程的解均不為整數(shù)可得出琪琪的思考對.【詳解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案為3;1.(2)∵參加聚會的人數(shù)為n(n為正整數(shù)),∴每人需跟(n-1)人握手,∴握手總數(shù)為.故答案為.(3)依題意,得:=28,
整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:參加聚會的人數(shù)為8人.拓展:琪琪的思考對,理由如下:如果線段數(shù)為2,則由題意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去).∵m為正整數(shù),∴沒有符合題意的解,∴線段總數(shù)不可能為2.【點睛】本題考查了一元二次方程的應(yīng)用以及列代數(shù)式,解題的關(guān)鍵是:(1)根據(jù)各數(shù)量之間的關(guān)系,列式計算;(2)根據(jù)各數(shù)量之間的關(guān)系,用含n的代數(shù)式表示出握手總數(shù);(3)(拓展)找準等量關(guān)系,正確列出一元二次方程.21、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設(shè)E(a,),E關(guān)于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設(shè)點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②如果,那么,解得,∴點的坐標是.綜上所述:符合要求的點有兩個,其坐標分別是和.(3)設(shè)E(a,),E關(guān)于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當(dāng)a=-1時,=;當(dāng)a=1時,=;∴點的坐標是或.點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)的性質(zhì)、解析式的求法以及相似三角形的性質(zhì).解答(1)問的關(guān)鍵是要分類討論,解答(3)的關(guān)鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.22、證明見解析【解析】【分析】(1)根據(jù)菱形的性質(zhì)可得BC=DC,,再根據(jù),從而可得,繼而得=,由旋轉(zhuǎn)的性質(zhì)可得=,證明≌,即可證得=;(2)根據(jù)菱形的對角線的性質(zhì)可得,,從而得,由,可得,由(1)可知,可推得,即可得,問題得證.【詳解】(1)∵四邊形ABCD是菱形,∴,,∵,∴,∴,∵線段由線段繞點順時針旋轉(zhuǎn)得到,∴,在和中,,∴≌,∴;(2)∵四邊形ABCD是菱形,∴,,∴,∵,∴,由(1)可知,,∴,∴,∴.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握和應(yīng)用相關(guān)的性質(zhì)與定理是解題的關(guān)鍵.23、工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).∴(米).∴工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.在Rt△BAE和Rt△DEC中,應(yīng)用正切函數(shù)分別求出AE和CE的長即可求得AC的長.24、(1);(2);(3)【解析】
(1)根據(jù)拋物線的函數(shù)表達式,利用二次函數(shù)的性質(zhì)即可找出拋物線的對稱軸;(2)根據(jù)拋物線的對稱軸及即可得出點、的坐標,根據(jù)點的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)表達式;(3)利用配方法求出拋物線頂點的坐標,依照題意畫出圖形,觀察圖形可得出,再利用一次函數(shù)圖象上點的坐標特征可得出,結(jié)合的取值范圍即可得出的取值范圍.【詳解】(1)∵拋物線的表達式為,∴拋物線的對稱軸為直線.故答案為:.(2)∵拋物線的對稱軸為直線,,∴點的坐標為,點的坐標為.將代入,得:,解得:,∴拋物線的函數(shù)表達式為.(3)∵,∴點的坐標為.∵直線y=n與直線的交點的橫坐標記為,且當(dāng)時,總有,∴x2<x3<x1,∵x3>0,∴直線與軸的交點在下方,∴.∵直線:經(jīng)過拋物線的頂點,∴,∴.【點睛】本題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求二次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是:(1)利用二次函數(shù)的性質(zhì)找出拋物線的對稱軸;(2)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)表達式;(3)依照題意畫出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年自然語言處理NLP進階練習(xí)題
- 城中村基礎(chǔ)設(shè)施提升方案
- BIM驅(qū)動的工程項目評估方案
- 綠化帶建設(shè)實施方案
- 碳捕集與存儲技術(shù)實施方案
- 道路橋梁檢修維護方案
- 煤礦環(huán)境治理技術(shù)方案
- 水電布線施工技術(shù)方案
- 城中村文化活動推廣方案
- 施工材料回收再利用技術(shù)方案
- 2025至2030中國EB病毒檢測行業(yè)標準制定與市場規(guī)范化發(fā)展報告
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會成熟人才招聘備考題庫及答案詳解1套
- 2026年浙江高考語文真題試卷+答案
- 2025 年大學(xué)人工智能(AI 應(yīng)用)期中測試卷
- 《市場營銷(第四版)》中職完整全套教學(xué)課件
- (正式版)DB61∕T 2121-2025 《風(fēng)力發(fā)電場集電線路設(shè)計規(guī)范》
- 疑難病例討論制度落實常見問題與改進建議
- 創(chuàng)傷性脾破裂的護理
- 蓬深102井鉆井工程(重新報批)項目環(huán)境影響報告表
- 大模型金融領(lǐng)域可信應(yīng)用參考框架
- (新教材)2025年人教版七年級上冊歷史期末復(fù)習(xí)常考知識點梳理復(fù)習(xí)提綱(教師版)
評論
0/150
提交評論