橢圓的簡單幾何性質(zhì)2_第1頁
橢圓的簡單幾何性質(zhì)2_第2頁
橢圓的簡單幾何性質(zhì)2_第3頁
橢圓的簡單幾何性質(zhì)2_第4頁
橢圓的簡單幾何性質(zhì)2_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

12.2.2橢圓的簡單幾何性質(zhì)(2)2標(biāo)準(zhǔn)方程范圍對稱性

頂點坐標(biāo)焦點坐標(biāo)半軸長離心率

a、b、c的關(guān)系|x|≤a,|y|≤b關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半軸長為a,短半軸長為b.(a>b)a2=b2+c2|x|≤b,|y|≤a(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱長半軸長為a,短半軸長為b.(a>b)a2=b2+c2例1求適合下列條件的橢圓的標(biāo)準(zhǔn)方程⑴經(jīng)過點P(-3,0)、Q(0,-2);⑵長軸長等于20,離心率為

;⑶一焦點將長軸分成2:1的兩部分,且經(jīng)過點;(4)與橢圓有公共焦點,且過點.3分析:⑴方法一:設(shè)方程為mx2+ny2=1(m>0,n>0,m≠n),將點的坐標(biāo)代入方程,求出m=1/9,n=1/4。方法二:利用橢圓的幾何性質(zhì),以坐標(biāo)軸為對稱軸的橢圓與坐標(biāo)軸的交點就是橢圓的頂點,于是焦點在x軸上,且點P、Q分別是橢圓長軸與短軸的一個端點,故a=3,b=2,所以橢圓的標(biāo)準(zhǔn)方程為注:待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程的步驟:⑴定型;⑵定量題型一:利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程例1求適合下列條件的橢圓的標(biāo)準(zhǔn)方程⑴經(jīng)過點P(-3,0)、Q(0,-2);⑵長軸長等于20,離心率為

;⑶一焦點將長軸分成2:1的兩部分,且經(jīng)過點;(4)與橢圓有公共焦點,且過點.4注:待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程的步驟:⑴定型;⑵定量題型一:利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程⑵或⑶

或(4)5練習(xí)1:已知橢圓的中心在原點,焦點在坐標(biāo)軸上,長軸是短軸的三倍,且橢圓經(jīng)過點P(3,0),求橢圓的方程。分類討論的數(shù)學(xué)思想6例2:(1)橢圓的離心率為

.題型二:橢圓的離心率問題變式2:若橢圓的離心率為,則m的值為

.變式1:若橢圓的離心率為,則m的值為

.277例2:(2)橢圓的左焦點是兩個頂點,如果F1到直線AB的距離為,則橢圓的離心率e=

.題型二:橢圓的離心率問題兩邊同時除以得解得或(舍去)8題型二:橢圓的離心率問題例2(3)如圖,已知F1為橢圓的左焦點,A,B分別為橢圓的右頂點和上頂點,P為橢圓上的一點,當(dāng)PF1⊥F1A,PO∥AB(O為橢圓的中心)時,求橢圓的離心率.9練習(xí)2:D變式1:設(shè)橢圓的兩個焦點分別為F1、F2,P為橢圓上的點,若△F1PF2為等腰直角三角形,則橢圓的離心率為

.變式2:設(shè)F1、F2是橢圓的左右焦點,若橢圓上存在點P,使∠F1PF2=90°,則橢圓的離心率的取值范圍是

.10小結(jié)1、利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法步驟:(1)定型;(2)定量。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論