正弦定理證明方法_第1頁
正弦定理證明方法_第2頁
正弦定理證明方法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

正弦定理證明方法證明:任意三角形ABC,作ABC的外接圓O.

作直徑BD交⊙O于D.連接DA.

由于直徑所對(duì)的圓周角是直角,所以∠DAB=90度

由于同弧所對(duì)的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

類似可證其余兩個(gè)等式。

∴a/sinA=b/sinB=c/sinC=2R

方法2:用直角三角形

證明:在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H

CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC

在直角三角形中,在鈍角三角形中(略)。

方法3:用向量

證明:記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c∴a+b+c=0則i(a+b+c)=i·a+i·b+i·c

=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0∴a/sinA=c/sinC(b與i垂直,i·b=0)

方法4:用三角形面積公式

證明:在△ABC中,設(shè)BC=a,AC=b,AB=c。作CD⊥AB垂足為點(diǎn)D,作BE⊥AC垂足為點(diǎn)E,則CD=a·sinB,BE=csinA,由三角形面積公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得b/sinB=c/sinC

∴a/sinA=b/sinB=c/sinC

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得證

正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC

證明如下:在三角形的外接圓里證明會(huì)比較便利

例如,用BC邊和經(jīng)過B的直徑BD,構(gòu)成的直角三角形DBC可以得到:

2RsinD=BC(R為三角形外接圓半徑)

角A=角D

得到:2RsinA=BC

同理:2RsinB=AC,2RsinC=AB

這樣就得到正弦定理了

2

一種是用三角證asinB=bsinA

用面積證

用幾何法,畫三角形的外接圓

聽說能用向量證,咋么證呢?

三角形ABC為銳角三角形時(shí),過A作單位向量j垂直于向量AB,則j與向量AB夾角為90,j與向量BC夾角為(90-B),j與向量CA夾角為(90+A),設(shè)AB=c,BC=a,AC=b,

由于AB+BC+CA=0

即j*AB+J*BC+J*CA=0

|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0

所以asinB=bsinA

3

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得證用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得證

4

滿足答案好評(píng)率:100%

正弦定理

步驟1.

在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步驟2.

證明a/sinA=b/sinB=c/sinC=2R:

如圖,任意三角形ABC,作ABC的外接圓O.

作直徑BD交⊙O于D.

連接DA.

由于直徑所對(duì)的圓周角是直角,所以∠DAB=90度

由于同弧所對(duì)的`圓周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R類似可證其余兩個(gè)等式。

余弦定理

平面對(duì)量證法:

∵如圖,有a+b=c(平行四邊形定則:兩個(gè)鄰邊之間的對(duì)角線代表兩個(gè)鄰邊大小)

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗體字符表示向量)

又∵Cos(π-θ)=-CosC

∴c^2=a^2+b^2-2|a||b|Cosθ(留意:這里用到了三角函數(shù)公式)

再拆開,得c^2=a^2+b^2-2*a*b*CosC

同理可證(其他),而下面的CosC=(c^2-b^2-a^2)/2ab就是將CosC移到左邊表示一下。

平面幾何證法:

在任意△ABC中

做AD⊥BC.

∠C所對(duì)的邊為c,∠B所對(duì)的邊為b,∠A所對(duì)的邊為a

則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

依據(jù)勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論