版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
浙江省衢州市衢江中學高一數(shù)學文上學期摸底試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.(5分)函數(shù)y=|x+1|的單調(diào)增區(qū)間是() A. (﹣∞,+∞) B. (﹣∞,0) C. (﹣1,+∞) D. (﹣∞,﹣1)參考答案:C考點: 函數(shù)的單調(diào)性及單調(diào)區(qū)間.專題: 函數(shù)的性質(zhì)及應用.分析: 根據(jù)絕對值函數(shù)的性質(zhì)即可得到結(jié)論.解答: 當x≥﹣1時,y=|x+1|=x+1,此時函數(shù)單調(diào)遞增,當x<﹣1時,y=|x+1|=﹣x﹣1,此時函數(shù)單調(diào)遞減,故函數(shù)的遞增區(qū)間為(﹣1,+∞),故選:C點評: 本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)絕對值函數(shù)的性質(zhì)將函數(shù)表示為分段函數(shù)是解決本題的關鍵.2.函數(shù)y=log(x﹣2)(5﹣x)的定義域是()A.(3,4) B.(2,5) C.(2,3)∪(3,5) D.(﹣∞,2)∪(5,+∞)參考答案:C【考點】函數(shù)的定義域及其求法.【分析】直接由對數(shù)的運算性質(zhì)列出不等式組,求解即可得答案.【解答】解:由,解得2<x<5且x≠3.∴函數(shù)y=log(x﹣2)(5﹣x)的定義域是:(2,3)∪(3,5).故選:C.3.若圓和圓相切,則等于(
)A.6 B.7 C.8 D.9參考答案:C【分析】根據(jù)的圓標準方程求得兩圓的圓心與半徑,再根據(jù)兩圓內(nèi)切、外切的條件,分別求得的值并驗證即可得結(jié)果.【詳解】圓的圓心,半徑為5;圓的圓心,半徑為r.若它們相內(nèi)切,則圓心距等于半徑之差,即=|r-5|,求得r=18或-8,不滿足5<r<10.若它們相外切,則圓心距等于半徑之和,即=|r+5|,求得r=8或-18(舍去),故選C.【點睛】本題主要考查圓的方程以及圓與圓的位置關系,屬于基礎題.兩圓半徑為,兩圓心間的距離為,比較與及與的大小,即可得到兩圓的位置關系.4.函數(shù)的零點一定在區(qū)間(
).A.B.C.D.參考答案:C∵,.∴函數(shù)的零點一定在區(qū)間上,故選.5.設a,b,c均為正數(shù),且則(
)A.
B.
C.
D.參考答案:B6.下列三個命題,其中正確的有
(
)①用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;②兩個底面平行且相似,其余各面都是梯形的多面體是棱臺;③有兩個面互相平行,其余各面都是等腰梯形的六面體是棱臺.A.0個
B.1個
C.2個
D.3個參考答案:A7.在區(qū)間任取一個實數(shù),則該數(shù)是不等式解的概率為(
)A.
B.
C.
D.參考答案:B8.設m,n是兩條不同的直線,是兩個不同的平面,給出下列四個命題:①如果,,那么;②如果,,,那么;③如果,,那么;④如果,,,那么.其中正確的是(
)A.①② B.②③ C.②④ D.③④參考答案:B【分析】利用空間中線線、線面、面面間的位置關系求解.【詳解】①如果,,那么m,n相交、平行或異面直線,故①錯誤;②根據(jù)線面平行性質(zhì)定理可知正確;③根據(jù)線面垂直判定定理可知正確;④如果,,,那么m,n相交、平行或異面直線,故④錯誤;故選:B【點睛】本題考查命題真假的判斷,是基礎題,解題時要注意空間思維能力的培養(yǎng).9.函數(shù)的最小正周期為π,若將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,則的解析式為(
)A. B.C. D.參考答案:D【分析】根據(jù)三角函數(shù)的周期求出ω=2,結(jié)合三角函數(shù)的平移關系進行求解即可.【詳解】∵函數(shù)(ω>0)的圖象中,最小正周期為π,∴即周期T,則ω=2,則f(x)=sin(2x),將函數(shù)f(x)的圖象向右平移個單位,得到函數(shù)g(x),則g(x)=sin[2(x)]=sin(2x)=sin2x,故選:D.【點睛】本題主要考查三角函數(shù)解析式的求解,根據(jù)周期公式求出ω的值,以及利用三角函數(shù)的平移法則是解決本題的關鍵.
10.設f(x)是定義在R上奇函數(shù),且當x>0時,等于(
)A.-1
B.
C.1
D.-參考答案:A略二、填空題:本大題共7小題,每小題4分,共28分11.過點P(1,)作圓x2+y2=1的兩條切線,切點分別為A,B,則=
.參考答案:【考點】平面向量數(shù)量積的運算;直線與圓相交的性質(zhì).【專題】計算題;平面向量及應用.【分析】根據(jù)直線與圓相切的性質(zhì)可求PA=PB,及∠∠APB,然后代入向量數(shù)量積的定義可求.【解答】解:連接OA,OB,PO則OA=OB=1,PO=,2,OA⊥PA,OB⊥PB,Rt△PAO中,OA=1,PO=2,PA=∴∠OPA=30°,∠BPA=2∠OPA=60°∴===故答案為:【點評】本題主要考查了圓的切線性質(zhì)的應用及平面向量的數(shù)量積的定義的應用,屬于基礎試題.12.某學習小組由學生和教師組成,人員構(gòu)成同時滿足以下三個條件:(ⅰ)男學生人數(shù)多于女學生人數(shù);(ⅱ)女學生人數(shù)多于教師人數(shù);(ⅲ)教師人數(shù)的兩倍多于男學生人數(shù).①若教師人數(shù)為4,則女學生人數(shù)的最大值為__________.②該小組人數(shù)的最小值為__________.參考答案:①6
②12試題分析:設男生人數(shù)、女生人數(shù)、教師人數(shù)分別為,則.①,②13.(5分)將進貨單價為8元的商品按10元一個銷售時,每天可售出100個,若這種商品的銷售價每個漲價1元,則日銷售量就減少10個,為獲取最大利潤,此商品的當日銷售價應定為每個
元.參考答案:14考點: 函數(shù)的最值及其幾何意義.分析: 根據(jù)已知的數(shù)量關系,合理列出方程,借助二次函數(shù)的性質(zhì)進行求解.解答: 設此商品的當日售價應定為每個x元,則利潤y=(x﹣8)?[100﹣(x﹣10)×10]=﹣10(x﹣14)2+360,∴x=14時最大利潤y=360.即為獲取最大利潤,此商品的當日銷售價應定為每個14元.故答案為:14.點評: 建立二次函數(shù)求解是解決這類問題的有效途徑.14.數(shù)列{an}滿足:an+1–an=12,n=1,2,3,…,且a6=4,當此數(shù)列的前n項和Sn>100時,n的最小值是
。參考答案:1215.若對任意x>0,≤a恒成立,則a的取值范圍是________.參考答案:略16.已知,,則
.參考答案:
17..若,則的最大值為
。參考答案:9略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(本小題滿分15分)已知等比數(shù)列的前項和為,正數(shù)數(shù)列的首項為,且滿足:.記數(shù)列前項和為.(Ⅰ)求的值;(Ⅱ)求數(shù)列的通項公式;(Ⅲ)是否存在正整數(shù),且,使得成等比數(shù)列?若存在,求出的值,若不存在,說明理由.參考答案:(本小題15分)解:(Ⅰ),,………(3分)因為為等比數(shù)列所以,得………(4分)
經(jīng)檢驗此時為等比數(shù)列.
………………(5分)
(Ⅱ)∵
∴數(shù)列為等差數(shù)列
…………(7分)又,所以所以
…………(10分)(Ⅲ)……(12分)假設存在正整數(shù),且,使得成等比數(shù)列則,所以由得且即,所以因為為正整數(shù),所以,此時所以滿足題意的正整數(shù)存在,.…………(15分)略19.在直角坐標系xOy中,以坐標原點O為圓心的圓與直線相切。(1)求圓O的方程;(2)若圓O上有兩點M,N關于直線對稱,且,求直線MN的方程;參考答案:(1)(2)或【分析】(1)直接利用點到直線的距離公式求出半徑,即可得出答案。(2)設出直線,求出圓心到直線的距離,利用半弦長直角三角形解出即可?!驹斀狻拷猓?),所以圓的方程為(2)由題意,可設直線的方程為則圓心到直線的距離則,即所以直線的方程為或【點睛】本題考查直線與圓的位置關系,屬于基礎題。20.某城市出租車收費標準如下:①起步價3km(含3km)為10元;②超過3km以外的路程按2元/km收費;③不足1km按1km計費.(1)試寫出收費y元與x(km)(0<x≤5)之間的函數(shù)關系式;(2)若某人乘出租車花了24元錢,求此人乘車里程xkm的取值范圍.參考答案:【考點】分段函數(shù)的應用.【分析】(1)根據(jù)條件建立函數(shù)關系即可試寫出收費y元與x(km)(0<x≤5)之間的函數(shù)關系式;(2)根據(jù)分段函數(shù),求出當y=24時的解即可.【解答】解:(1)根據(jù)條件可得收費y元與x(km)(0<x≤5)之間的函數(shù)關系式為.(2)∵24>10,∴此人乘車里程x>3,則由題意得24﹣10=14,則14÷2=7,即此人最多車程為3+7=10km,最小為10﹣1=9,即9<x≤10.21.(本小題滿分15分)計算下列各式:(1);(2)(3)求函數(shù)的值域,并寫出其單調(diào)區(qū)間.參考答案:(2)原式
=
……………10分(3)
增區(qū)間
減區(qū)間
………………15分
22.已知函數(shù)f(x)=|1﹣|,(x>0).(1)判斷函數(shù)的單調(diào)性;(2)當0<a<b,且f(a)=f(b)時,求的值;(3)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b]?若存在,請求出a,b的值,若不存在,請說明理由.參考答案:考點:函數(shù)的值域;函數(shù)的定義域及其求法;函數(shù)的圖象.專題:函數(shù)的性質(zhì)及應用.分析:(1)利用基本初等函數(shù)的單調(diào)性來判斷;(2)結(jié)合a,b的范圍以及給的函數(shù)式,將f(a)=f(b)表示出來,即可得到所求的值;(3)首先函數(shù)是單調(diào)函數(shù),同時滿足f(a)=b,f(b)=a,或f(a)=a,f(b)=b據(jù)此求解.解答:解:(I)∵x>0,∴∴f(x)在(0,1)上為減函數(shù),在(1,+∞)上是增函數(shù).由0<a<b,且f(a)=f(b),可得0<a<1<b和.即.(II)不存在滿足條件的實數(shù)a,b.若存在滿足條件的實數(shù)a,b,使得函數(shù)y=f(x)=|1﹣|的定義域、值域都是[a,b],則a>0而;①當a,b∈(0,1)時,f(x)=在(0,1)上為減函數(shù).故
即
解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職市場營銷(價格管理策略)試題及答案
- 2025年高職汽車維修(懸掛系統(tǒng)維修)試題及答案
- 2025年大學大一(康復工程)康復輔具材料學基礎階段測試試題及答案
- 2025年高職(香料香精技術(shù)與工程)香料調(diào)配技術(shù)階段測試試題及答案
- 2025年中職(船舶電氣技術(shù))電氣技術(shù)階段測試題及答案
- 2025年大學烹飪與營養(yǎng)教育(中式烹調(diào)研究)試題及答案
- 2025年大學環(huán)境科學技術(shù)(環(huán)境科學研究)試題及答案
- 2025年中職(酒店管理)酒店禮儀規(guī)范階段測試題及答案
- 2025年中職首飾設計與制作(首飾打磨)試題及答案
- 2025年高職第二學年(測繪地理信息技術(shù))GIS應用測試題及答案
- 審計數(shù)據(jù)管理辦法
- 2025國開《中國古代文學(下)》形考任務1234答案
- 研發(fā)公司安全管理制度
- 兒童口腔診療行為管理學
- 瓷磚樣品發(fā)放管理制度
- 北京市2025學年高二(上)第一次普通高中學業(yè)水平合格性考試物理試題(原卷版)
- 短文魯迅閱讀題目及答案
- 肺部感染中醫(yī)護理
- 臨床研究質(zhì)量控制措施與方案
- 中考英語聽力命題研究與解題策略省公開課金獎全國賽課一等獎微課獲獎課件
- 膀胱鏡檢查室的工作制度
評論
0/150
提交評論