三湘教育聯(lián)盟2024屆高一上數(shù)學期末考試試題含解析_第1頁
三湘教育聯(lián)盟2024屆高一上數(shù)學期末考試試題含解析_第2頁
三湘教育聯(lián)盟2024屆高一上數(shù)學期末考試試題含解析_第3頁
三湘教育聯(lián)盟2024屆高一上數(shù)學期末考試試題含解析_第4頁
三湘教育聯(lián)盟2024屆高一上數(shù)學期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

三湘教育聯(lián)盟2024屆高一上數(shù)學期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是A.若,,,則B.若,,,則C.若,,,則D.若,,,則2.函數(shù)的一部分圖像如圖所示,則()A. B.C. D.3.現(xiàn)對有如下觀測數(shù)據(jù)345671615131417記本次測試中,兩組數(shù)據(jù)的平均成績分別為,兩班學生成績的方差分別為,,則()A., B.,C., D.,4.如圖,已知的直觀圖是一個直角邊長是1的等腰直角三角形,那么的面積是A. B.C.1 D.5.如圖,邊長為的正方形是一個水平放置的平面圖形的直觀圖,則圖形的面積是A. B.C. D.6.在軸上的截距分別是,4的直線方程是A. B.C. D.7.計算:的值為A. B.C. D.8.已知定義在R上的奇函數(shù)f(x)滿足,當時,,則()A. B.C. D.9.點關(guān)于直線的對稱點是A. B.C. D.10.已知函數(shù),若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則的取值范圍為()A.(﹣1,+∞) B.(﹣1,1]C.(﹣∞,1) D.[﹣1,1)二、填空題:本大題共6小題,每小題5分,共30分。11.已知長方體的長、寬、高分別是3,4,5,且它的8個頂點都在同一球面上,則這個球的表面積是________.12.已知集合,集合,則________13.如圖是某個鐵質(zhì)幾何體的三視圖,其中每個小正方形格子的邊長均為個長度單位,將該鐵質(zhì)幾何體熔化,制成一個大鐵球,如果在熔制過程中材料沒有損耗,則大鐵球的表面積為_______________________.14.已知,,與的夾角為60°,則________.15.已知一個扇形的面積為,半徑為,則其圓心角為___________.16.已知一扇形的弧所對的圓心角為54°,半徑r=20cm,則扇形的周長為___cm.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在①函數(shù)的圖象向右平移個單位長度得到的圖象,圖象關(guān)于原點對稱;②向量,;③函數(shù).這三個條件中任選一個,補充在下面問題中,并解答.已知_________,函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)求;(2)求函數(shù)在上的單調(diào)遞減區(qū)間.18.已知函數(shù).(1)求的值及的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值.19.(1)從區(qū)間內(nèi)任意選取一個實數(shù),求事件“”發(fā)生的概率;(2)從區(qū)間內(nèi)任意選取一個整數(shù),求事件“”發(fā)生的概率.20.設(shè)全集U=R,集合,(1)當時,求;(2)若A∩B=A,求實數(shù)a的取值范圍21.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱“局部中心函數(shù)”.(1)已知二次函數(shù)(),試判斷是否為“局部中心函數(shù)”,并說明理由;(2)若是定義域為上的“局部中心函數(shù)”,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】,,故選D.考點:點線面的位置關(guān)系.2、D【解題分析】由圖可知,,排除選項,由,排除選項,故選.3、C【解題分析】利用平均數(shù)以及方差的計算公式即可求解.【題目詳解】,,,,故,故選:C【題目點撥】本題考查了平均數(shù)與方差,需熟記公式,屬于基礎(chǔ)題.4、D【解題分析】根據(jù)斜二測畫法的基本原理,將平面直觀圖與還原為原幾何圖形,利用三角形面積公式可得結(jié)果.【題目詳解】平面直觀圖與其原圖形如圖,直觀圖是直角邊長為的等腰直角三角形,還原回原圖形后,邊還原為長度不變,仍為,直觀圖中的在原圖形中還原為長度,且長度為,所以原圖形的面積為,故選D.【題目點撥】本題主要考查直觀圖還原幾何圖形,屬于簡單題.利用斜二測畫法作直觀圖,主要注意兩點:一是與軸平行的線段仍然與與軸平行且相等;二是與軸平行的線段仍然與軸平行且長度減半.5、D【解題分析】根據(jù)直觀圖畫出原圖可得答案.【題目詳解】由直觀圖畫出原圖,如圖,因為,所以,,則圖形的面積是.故選:D6、B【解題分析】根據(jù)直線方程的截距式寫出直線方程即可【題目詳解】根據(jù)直線方程的截距式寫出直線方程,化簡得,故選B.【題目點撥】本題考查直線的截距式方程,屬于基礎(chǔ)題7、A【解題分析】運用指數(shù)對數(shù)運算法則.【題目詳解】.故選:A.【題目點撥】本題考查指數(shù)對數(shù)運算,是簡單題.8、B【解題分析】由題意得,因為,則,所以函數(shù)表示以為周期的周期函數(shù),又因為為奇函數(shù),所以,所以,,,所以,故選B.9、A【解題分析】設(shè)對稱點為,則,則,故選A.10、B【解題分析】由方程f(x)=a,得到x1,x2關(guān)于x=﹣1對稱,且x3x4=1;化簡,利用數(shù)形結(jié)合進行求解即可【題目詳解】作函數(shù)f(x)的圖象如圖所示,∵方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2關(guān)于x=﹣1對稱,即x1+x2=﹣2,0<x3<1<x4,則|log2x3|=|log2x4|,即﹣log2x3=log2x4,則log2x3+log2x4=0,即log2x3x4=0,則x3x4=1;當|log2x|=1得x=2或,則1<x4≤2;≤x3<1;故;則函數(shù)y=﹣2x3+,在≤x3<1上為減函數(shù),則故當x3=取得y取最大值y=1,當x3=1時,函數(shù)值y=﹣1.即函數(shù)取值范圍(﹣1,1]故選B【題目點撥】本題考查分段函數(shù)的運用,主要考查函數(shù)的單調(diào)性的運用,運用數(shù)形結(jié)合的思想方法是解題的關(guān)鍵,屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積【題目詳解】長方體的一個頂點上的三條棱長分別是3,4,5,且它的8個頂點都在同一個球面上,所以長方體的對角線就是球的直徑,長方體的對角線為:,所以球的半徑為:,則這個球的表面積是:故答案為:【題目點撥】本題考查球的內(nèi)接多面體的有關(guān)知識,球的表面積的求法,注意球的直徑與長方體的對角線的轉(zhuǎn)化是本題的解答的關(guān)鍵,考查計算能力,空間想象能力12、【解題分析】由交集定義計算【題目詳解】由題意故答案為:13、【解題分析】由已知得該鐵質(zhì)幾何體是由一個小鐵球和一個鐵質(zhì)圓錐體拼接而成,根據(jù)圓錐和球體的體積公式可得答案.【題目詳解】該鐵質(zhì)幾何體是由一個小鐵球和一個鐵質(zhì)圓錐體拼接而成,體積之和為,設(shè)制成的大鐵球半徑為,則,得,故大鐵球的表面積為.故答案為:.14、10【解題分析】由數(shù)量積的定義直接計算.【題目詳解】.故答案為:10.15、【解題分析】結(jié)合扇形的面積公式即可求出圓心角的大小.【題目詳解】解:設(shè)圓心角為,半徑為,則,由題意知,,解得,故答案為:16、6π+40【解題分析】根據(jù)角度制與弧度制的互化,可得圓心角,再由扇形的弧長公式,可得弧長,即可求解扇形的周長,得到答案.【題目詳解】由題意,根據(jù)角度制與弧度制的互化,可得圓心角,∴由扇形的弧長公式,可得弧長,∴扇形的周長為.【題目點撥】本題主要考查了扇形的弧長公式的應用,其中解答中熟記扇形的弧長公式,合理準確運算是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、選擇見解析;(1);(2)單調(diào)遞減區(qū)間為.【解題分析】選條件①:由函數(shù)的圖象相鄰兩條對稱軸之間的距離為,得到,解得,再由平移變換和圖象關(guān)于原點對稱,解得,得到,(1)將代入求解;(2)令,結(jié)合求解.選條件②:利用平面向量的數(shù)量積運算得到,再由,求得得到.(1)將代入求解;(2)令,結(jié)合求解.選條件③:利用兩角和的正弦公式,二倍角公式和輔助角法化簡得到,再由,求得得到.(1)將代入求解;(2)令,結(jié)合求解.【題目詳解】選條件①:由題意可知,最小正周期,∴,∴,∴,又函數(shù)圖象關(guān)于原點對稱,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函數(shù)在上的單調(diào)遞減區(qū)間為.選條件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函數(shù)在上的單調(diào)遞減區(qū)間為.【題目點撥】方法點睛:1.討論三角函數(shù)性質(zhì),應先把函數(shù)式化成y=Asin(ωx+φ)(ω>0)的形式

函數(shù)y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為,y=tan(ωx+φ)的最小正周期為.

對于函數(shù)的性質(zhì)(定義域、值域、單調(diào)性、對稱性、最值等)可以通過換元的方法令t=ωx+φ,將其轉(zhuǎn)化為研究y=sint的性質(zhì)18、(1),單調(diào)增區(qū)間為,(2)最大值為,最小值為【解題分析】(1)化簡得到,代入計算得到函數(shù)值,解不等式得到單調(diào)區(qū)間.(2)計算,根據(jù)三角函數(shù)圖像得到最值.【小問1詳解】,故,,解得,,故單調(diào)增區(qū)間為,【小問2詳解】當時,,在的最大值為1,最小值為,故在區(qū)間上的最大值為,最小值為.19、(1);(2).【解題分析】(1)由,得,即,故由幾何概型概率公式,可得從區(qū)間內(nèi)任意選取一個實數(shù),求事件“”發(fā)生的概率;(2)由,得,整數(shù)有個,在區(qū)間的整數(shù)有個,由古典概型概率公式可知得,從區(qū)間內(nèi)任意選取一個整數(shù)事件“”發(fā)生的概率.試題解析:(1)因為,所以,即,故由幾何概型可知,所求概率為.(2)因為,所以,則在區(qū)間內(nèi)滿足的整數(shù)為1,2,3,共3個,故由古典概型可知,所求概率為.20、(1)或(2)【解題分析】(1)化簡集合B,根據(jù)補集、并集的運算求解;(2)由條件轉(zhuǎn)化為A?B,分類討論,建立不等式或不等式組求解即可.【小問1詳解】當時,,,或,或【小問2詳解】由A∩B=A,得A?B,當A=?時,則3a>a+2,解得a>1,當A≠?時,則,解得,綜上,實數(shù)a的取值范圍是21、(1)為“局部中心函數(shù)”,理由詳見解題過程;(2)【解題分析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論