山東省重點中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
山東省重點中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
山東省重點中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
山東省重點中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
山東省重點中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省重點中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個三角形,邊長分別為,三角形的面積S可由公式求得,其中為三角形周長的一半,這個公式也被稱為海倫----秦九韶公式,現(xiàn)有一個三角形的邊長滿足,則此三角形面積的最大值為()A.6 B.9C.12 D.182.已知函數(shù),則的()A.最小正周期,最大值為 B.最小正周期為,最大值為C.最小正周期為,最大值為 D.最小正周期為,最大值為3.若,,,則a,b,c的大小關(guān)系是A. B.C. D.4.過點A(3,4)且與直線l:x﹣2y﹣1=0垂直的直線的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=05.若是第二象限角,則點在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.函數(shù),則函數(shù)的零點個數(shù)為()A.2個 B.3個C.4個 D.5個7.已知是定義在上的偶函數(shù),且在上單調(diào)遞減,若,,,則、、的大小關(guān)系為()A. B.C. D.8.函數(shù)的定義域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)9.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},則A∩B等于()A. B.C. D.,10.若?x∈[0,3],使得不等式x2﹣2x+a≥0成立,則實數(shù)a的取值范圍是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣3二、填空題:本大題共6小題,每小題5分,共30分。11.我國古代數(shù)學(xué)名著《九章算術(shù)》中相當(dāng)于給出了已知球的體積V,求其直徑d的一個近似公式.規(guī)定:“一個近似數(shù)與它準(zhǔn)確數(shù)的差的絕對值叫這個近似數(shù)的絕對誤差.”如果一個球體的體積為,那么用這個公式所求的直徑d結(jié)果的絕對誤差是___________.(參考數(shù)據(jù):,結(jié)果精確到0.01)12.已知函數(shù)的部分圖象如圖所示,則____________13.已知直線與兩坐標(biāo)軸所圍成的三角形的面積為1,則實數(shù)值是____________14.已知函數(shù)=,若對任意的都有成立,則實數(shù)的取值范圍是______15.已知向量,若,則m=____.16.已知函數(shù),則不等式的解集為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知平面向量,,,且,.(1)求和:(2)若,,求向量與向量的夾角的大小.18.考慮到高速公路行車安全需要,一般要求高速公路的車速(公里/小時)控制在范圍內(nèi).已知汽車以公里/小時的速度在高速公路上勻速行駛時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),不同型號汽車值不同,且滿足.(1)若某型號汽車以120公里/小時的速度行駛時,每小時的油耗為升,欲使這種型號的汽車每小時的油耗不超過9升,求車速的取值范圍;(2)求不同型號汽車行駛100千米的油耗的最小值.19.已知集合,集合,集合.(1)求;(2)若,求實數(shù)a的取值范圍.20.如圖,AB是圓柱OO1的一條母線,BC是底面的一條直徑,D是圓О上一點,且AB=BC=5,CD=3(1)求該圓柱的側(cè)面積;(2)求點B到平面ACD的距離21.已知函數(shù).(1)求的定義域;(2)若函數(shù),且對任意的,,恒成立,求實數(shù)a的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】根據(jù)題意可得,代入面積公式,配方即可求出最大值.【題目詳解】由,,則,所以,當(dāng)時,取得最大值,此時.故選:C2、B【解題分析】利用輔助角公式化簡得到,求出最小正周期和最大值.【題目詳解】所以最小正周期為,最大值為2.故選:B3、C【解題分析】由題意,根據(jù)實數(shù)指數(shù)函數(shù)性質(zhì),可得,根據(jù)對數(shù)的運算性質(zhì),可得,即可得到答案.【題目詳解】由題意,根據(jù)實數(shù)指數(shù)函數(shù)的性質(zhì),可得,根據(jù)對數(shù)的運算性質(zhì),可得;故選C【題目點撥】本題主要考查了指數(shù)函數(shù)與對數(shù)函數(shù)的運算性質(zhì)的應(yīng)用,其中解答中合理運用指數(shù)函數(shù)和對數(shù)函數(shù)的運算性質(zhì),合理得到的取值范圍是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、A【解題分析】依題意,設(shè)所求直線的一般式方程為,把點坐標(biāo)代入求解,從而求出一般式方程.【題目詳解】設(shè)經(jīng)過點且垂直于直線的直線的一般式方程為,把點坐標(biāo)代入可得:,解得,所求直線方程為:.故選:A【題目點撥】本題考查了直線的方程、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.5、D【解題分析】先分析得到,即得點所在的象限.【題目詳解】因為是第二象限角,所以,所以點在第四象限,故選D【題目點撥】本題主要考查三角函數(shù)的象限符合,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.6、D【解題分析】函數(shù)h(x)=f(x)﹣log4x的零點個數(shù)?函數(shù)f(x)與函數(shù)y=log4x的圖象交點個數(shù).畫出函數(shù)f(x)與函數(shù)y=log4x的圖象(如上圖),其中=的圖像可以看出來,當(dāng)x增加個單位,函數(shù)值變?yōu)樵瓉淼囊话?,即往右移個單位,函數(shù)值變?yōu)樵瓉淼囊话耄灰来晤愅?;根?jù)圖象可得函數(shù)f(x)與函數(shù)y=log4x的圖象交點為5個∴函數(shù)h(x)=f(x)﹣log4x的零點個數(shù)為5個.故選D7、D【解題分析】分析可知函數(shù)在上為增函數(shù),比較、、的大小,結(jié)合函數(shù)的單調(diào)性與偶函數(shù)的性質(zhì)可得出結(jié)論.【題目詳解】因為偶函數(shù)在上為減函數(shù),則該函數(shù)在上為增函數(shù),,則,即,,,所以,,故,即.故選:D.8、A【解題分析】根據(jù)二次根式的性質(zhì)求出函數(shù)的定義域即可【題目詳解】由題意得:解得:﹣1<x≤2,故函數(shù)的定義域是(﹣1,2],故選A【題目點撥】本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.常見的求定義域的類型有:對數(shù),要求真數(shù)大于0即可;偶次根式,要求被開方數(shù)大于等于0;分式,要求分母不等于0,零次冪,要求底數(shù)不為0;多項式要求每一部分的定義域取交集.9、A【解題分析】由得,得,則,故選A.10、D【解題分析】等價于二次函數(shù)的最大值不小于零,即可求出答案.【題目詳解】設(shè),,使得不等式成立,須,即,或,解得.故選:D【題目點撥】本題考查特稱命題成立求參數(shù)的問題,等價轉(zhuǎn)化是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、05【解題分析】根據(jù)球的體積公式可求得準(zhǔn)確直徑,由近似公式可得近似直徑,然后由絕對誤差的定義即可求解.【題目詳解】解:由題意,,所以,所以直徑d結(jié)果的絕對誤差是,故答案為:0.05.12、①.②.【解題分析】分析:先根據(jù)四分之一周期求根據(jù)最高點求.詳解:因為因為點睛:已知函數(shù)的圖象求解析式(1).(2)由函數(shù)周期求(3)利用“五點法”中相對應(yīng)的特殊點求.13、1或-1【解題分析】令x=0,得y=k;令y=0,得x=?2k.∴三角形面積S=|xy|=k2.又S=1,即k2=1,值是1或-1.14、【解題分析】轉(zhuǎn)化為對任意的都有,再分類討論求出最值,代入解不等式即可得解.【題目詳解】因為=,所以等價于,等價于,所以對任意的都有成立,等價于,(1)當(dāng),即時,在上為減函數(shù),,在上為減函數(shù),,所以,解得,結(jié)合可得.(2)當(dāng),即時,在上為減函數(shù),,在上為減函數(shù),在上為增函數(shù),或,所以且,解得.(3)當(dāng),即時,,在上為減函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.(4)當(dāng),即時,在上為減函數(shù),在上為增函數(shù),,在上為增函數(shù),,此時不成立.(5)當(dāng)時,在上為增函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.綜上所述:.故答案為:15、-1【解題分析】求出的坐標(biāo),由向量共線時坐標(biāo)的關(guān)系可列出關(guān)于的方程,從而可求出的值.【題目詳解】解:∵,∴,∵,,∴,解得.故答案為:-116、【解題分析】分x小于等于0和x大于0兩種情況根據(jù)分段函數(shù)分別得到f(x)的解析式,把得到的f(x)的解析式分別代入不等式得到兩個一元二次不等式,分別求出各自的解集,求出兩解集的并集即可得到原不等式的解集【題目詳解】解:當(dāng)x≤0時,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集為[-1,0];當(dāng)x>0時,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集為[0,1],綜上原不等式的解集為[-1,1].故答案為[-1,1]【題目點撥】此題考查了不等式的解法,考查了轉(zhuǎn)化思想和分類討論的思想,是一道基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】(1)本題首先可根據(jù)、得出,然后通過計算即可得出結(jié)果;(2)本題首先可根據(jù)題意得出以及,然后求出、以及的值,最后根據(jù)向量的數(shù)量積公式即可得出結(jié)果.【題目詳解】(1)因為,,,且,,所以,解得,故,.(2)因為,,所以,因為,,所以,,,,設(shè)與的夾角為,則,因為,所以,向量與向量的夾角為.【題目點撥】本題考查向量平行、向量垂直以及向量的數(shù)量積的相關(guān)性質(zhì),若、且,則,考查通過向量的數(shù)量積公式求向量的夾角,考查計算能力,是中檔題.18、(1);(2)當(dāng)時,該汽車行駛100千米的油耗的最小值為升;當(dāng)時,該汽車行駛100千米的油耗的最小值為升.【解題分析】(1)根據(jù)題意,可知當(dāng)時,求出的值,結(jié)合條件得出,再結(jié)合,即可得出車速的取值范圍;(2)設(shè)該汽車行駛100千米的油耗為升,得出關(guān)于與的函數(shù)關(guān)系式,通過換元令,則,得出與的二次函數(shù),再根據(jù)二次函數(shù)的圖象和性質(zhì)求出的最小值,即可得出不同型號汽車行駛100千米的油耗的最小值.【小問1詳解】解:由題意可知,當(dāng)時,,解得:,由,即,解得:,因為要求高速公路的車速(公里/小時)控制在范圍內(nèi),即,所以,故汽車每小時的油耗不超過9升,求車速的取值范圍.【小問2詳解】解:設(shè)該汽車行駛100千米的油耗為升,則,令,則,所以,,可得對稱軸為,由,可得,當(dāng)時,即時,則當(dāng)時,;當(dāng),即時,則當(dāng)時,;綜上所述,當(dāng)時,該汽車行駛100千米的油耗的最小值為升;當(dāng)時,該汽車行駛100千米的油耗的最小值為升.19、(1)(2)【解題分析】(1)先化簡集合A,B,再利用交集運算求解;(2)根據(jù),化簡集合,再根據(jù)求解.【小問1詳解】解:∵,∴,∴集合.∵,∴,∴集合.∴.【小問2詳解】∵,∴.∵,∴,解得.∴實數(shù)a的取值范圍是.20、(1)(2)【解題分析】(1)利用圓柱的側(cè)面積公式計算出側(cè)面積.(2)利用等體積法求得到平面的距離.【小問1詳解】圓柱的底面半徑為,高為,所以圓柱的側(cè)面積為.【小問2詳解】是圓的直徑,所以,,.根據(jù)圓柱的幾何性質(zhì)可知,由于,所以平面,所以.,,設(shè)到平面的距離為,則,即.21、(1).(2)(2,+∞).【解題分析】(1)使對數(shù)式有意義,即得定義域;(2)命題等價于,如其中一個不易求得,如不易求,則轉(zhuǎn)化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論