版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省創(chuàng)新發(fā)展聯(lián)盟高二上數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一動圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線2.“橢圓的離心率為”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.4位同學(xué)報名參加四個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有()A.24種 B.81種C.64種 D.256種4.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為()A. B.C. D.5.已知直線,,若,則實數(shù)()A. B.C.1 D.26.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.7.已知,是橢圓的兩焦點,是橢圓上任一點,從引外角平分線的垂線,垂足為,則點的軌跡為()A.圓 B.兩個圓C.橢圓 D.兩個橢圓8.①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)為()A.0 B.1C.2 D.39.以,為焦點,且經(jīng)過點的橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.如圖,是水平放置的的直觀圖,其中,,分別與軸,軸平行,則()A.2 B.C.4 D.11.拋物線的焦點到準(zhǔn)線的距離()A.4 B.C.2 D.12.已知橢圓上一點到左焦點的距離為,是的中點,則()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,則向量在向量上的投影向量的坐標(biāo)是___________.14.直線的傾斜角的大小是_________.15.若橢圓的焦點在軸上,且長軸長是短軸長的2倍,則______.16.若等比數(shù)列滿足,則的前n項和____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值18.(12分)在平面直角坐標(biāo)系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求長.19.(12分)已知拋物線焦點是,斜率為的直線l經(jīng)過F且與拋物線相交于A、B兩點(1)求該拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;(2)求線段AB的長20.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.21.(12分)如圖,在四棱錐中,底面是矩形,,,,,為的中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.22.(10分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過的直線交曲線于兩點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)動圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關(guān)系式,化簡,再根據(jù)圓錐曲線的定義,可得到動圓圓心軌跡.【詳解】設(shè)動圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動圓圓心軌跡為雙曲線的一支.故選:C【點睛】本題考查了兩圓的位置關(guān)系,圓錐曲線的定義,屬于基礎(chǔ)題.2、C【解析】討論橢圓焦點的位置,根據(jù)離心率分別求出參數(shù)m,由充分必要性的定義判斷條件間的充分、必要關(guān)系.【詳解】當(dāng)橢圓的焦點在軸上時,,得;當(dāng)橢圓的焦點在軸上時,,得故“橢圓的離心率為”是“”的必要不充分條件故選:C.3、D【解析】利用分步乘法計數(shù)原理進(jìn)行計算.【詳解】每位同學(xué)均有四種選擇,故不同的報名方法有種.故選:D4、A【解析】由函數(shù)單調(diào)性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負(fù),,可化為:或,解得或故選:A5、D【解析】根據(jù)兩條直線的斜率相等可得結(jié)果.【詳解】因為直線,,且,所以,故選:D.6、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因為內(nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.7、A【解析】設(shè)的延長線交的延長線于點,由橢圓性質(zhì)推導(dǎo)出,由題意知是△的中位線,從而得到點的軌跡是以為圓心,以為半徑的圓【詳解】是焦點為、的橢圓上一點為的外角平分線,,設(shè)的延長線交的延長線于點,如圖,,,,由題意知是△的中位線,,點的軌跡是以為圓心,以為半徑的圓故選:A8、B【解析】寫出逆命題判斷①;寫出逆否命題判斷②;寫出否命題判斷③.【詳解】①:“若,則互為相反數(shù)”的逆命題為:“若互為相反數(shù),則”,是真命題;②:“若,則”的逆否命題為:“若,則”.因為當(dāng)時,有,但不成立.故“若,則”是假命題.③:“若,則”的否命題為:“若,則”.因為當(dāng)時,有,但是,即不成立.故“若,則”是假命題..故選:B9、B【解析】根據(jù)焦點在x軸上,c=1,且過點,用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【詳解】因為焦點在x軸上,所以C不正確;又因為c=1,故排除D;將代入得,故A錯誤,所以選B.故選:B10、D【解析】先確定是等腰直角三角形,求出,再確定原圖的形狀,進(jìn)而求出.【詳解】由題意可知是等腰直角三角形,,其原圖形是,,,,則,故選:D.11、A【解析】寫出拋物線的標(biāo)準(zhǔn)方程,即可確定焦點到準(zhǔn)線的距離.【詳解】由題設(shè),拋物線的標(biāo)準(zhǔn)方程為,則,∴焦點到準(zhǔn)線的距離為4.故選:A.12、A【解析】由橢圓的定義得,進(jìn)而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因為由橢圓的定義得,,所以,因為是的中點,是的中點,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)投影向量的計算公式,計算出正確答案.【詳解】向量在向量上的投影向量的坐標(biāo)是.故答案為:14、【解析】由題意,即,∴考點:直線的傾斜角.15、4【解析】根據(jù)橢圓焦點在軸上方程的特征進(jìn)行求解即可.【詳解】因為橢圓的焦點在軸上,所以有,因為長軸長是短軸長的2倍,所以有,故答案為:416、##【解析】由已知及等比數(shù)列的通項公式得到首項和公比,再利用前n項和公式計算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,?。辉O(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴18、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.19、(1)拋物線的方程為,其準(zhǔn)線方程為,(2)【解析】(1)根據(jù)焦點可求出的值,從而求出拋物線的方程,即可得到準(zhǔn)線方程;(2)設(shè),,,,將直線的方程與拋物線方程聯(lián)立消去,整理得,得到根與系數(shù)的關(guān)系,由拋物線的定義可知,代入即可求出所求【小問1詳解】解:由焦點,得,解得所以拋物線的方程為,其準(zhǔn)線方程為,【小問2詳解】解:設(shè),,,直線的方程為.與拋物線方程聯(lián)立,得,消去,整理得,由拋物線定義可知,所以線段的長為20、(1),△的面積為;(2).【解析】(1)應(yīng)用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關(guān)系可得,即可求目標(biāo)式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:,則,所以.21、(1)證明見解析;(2).【解析】(1)由可得,再結(jié)合和線面垂直的判定定理可得平面,則,再由可得平面.(2)以為原點,,,為軸,軸,軸,建立空間直角坐標(biāo)系如圖所示,利用空間向量求解即可【詳解】(1)證明:∵為矩形,且,∴.又∵,.∴,.又∵,,∴平面.∵平面,∴又∵,,∴平面.(2)解:以為原點,,,為軸,軸,軸,建立空間直角坐標(biāo)系如圖所示:則,,,,,∴,,設(shè)平面法向量則,即∴,∴∴直線與所成角的正弦值為.22、(1);(2).【解析】(1)根據(jù)題意,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職國際航運業(yè)務(wù)管理(航運業(yè)務(wù)操作)試題及答案
- 2025年高職航空機電設(shè)備維修(航空設(shè)備維護(hù))試題及答案
- 2025年高職(食品生物技術(shù))食品酶制劑應(yīng)用專項測試試題及答案
- 2025年高職生態(tài)保護(hù)運營(運營技術(shù))試題及答案
- 2025年大學(xué)戲劇影視表演(表演基礎(chǔ))試題及答案
- 2025年高職(智能制造裝備技術(shù))裝備維護(hù)階段測試題及答案
- 2025年高職(給排水工程技術(shù)專業(yè))管道維修試題及答案
- 2025年大學(xué)休閑體育(康樂體育)試題及答案
- 2025年高職地理教育(地理教學(xué)設(shè)計)試題及答案
- 2025年高職(園林技術(shù))綠化工程施工實訓(xùn)試題及答案
- 2025年公司押運年終總結(jié)樣本(五篇)
- 鋁單板幕墻施工工藝與鋁單板幕墻施工方案
- 安全協(xié)議責(zé)任書模板
- 卵巢顆粒細(xì)胞瘤的診治進(jìn)展2025
- 供貨方案及保證措施
- 高速公路交叉口交通組織方案
- 數(shù)學(xué)廣角:搭配問題 課件 人教版數(shù)學(xué)三年級上冊
- 2025杭州市市級機關(guān)事業(yè)單位編外招聘考試備考試題及答案解析
- 車間電纜整改方案模板(3篇)
- 政協(xié)機車輛管理辦法
- 食品加工助劑管理辦法
評論
0/150
提交評論