版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高一上學(xué)期期末數(shù)學(xué)試題一?選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.命題“SKIPIF1<0”的否定是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)全稱命題的否定形式書寫即可判斷.【詳解】利用全稱量詞命題否定是存在量詞命題,所以命題“SKIPIF1<0”的否定為:“SKIPIF1<0”,故選:SKIPIF1<0.2.已知集合SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】利用一元二次不等式的解法和指數(shù)函數(shù)的單調(diào)性求出集合SKIPIF1<0,然后利用集合的運(yùn)算即可求解.【詳解】集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0,由并集的運(yùn)算可知:SKIPIF1<0,故選:A3.已知函數(shù)SKIPIF1<0,角SKIPIF1<0終邊經(jīng)過SKIPIF1<0與SKIPIF1<0圖象的交點(diǎn),則SKIPIF1<0()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)冪函數(shù)的性質(zhì)求出兩函數(shù)圖象的交點(diǎn)坐標(biāo),結(jié)合任意角的三角函數(shù)的定義即可求解.【詳解】因為冪函數(shù)SKIPIF1<0和SKIPIF1<0圖象的交點(diǎn)為SKIPIF1<0,所以角SKIPIF1<0的終邊經(jīng)過交點(diǎn)SKIPIF1<0,所以SKIPIF1<0.故選:A.4.“SKIPIF1<0”是“SKIPIF1<0”的()A.充分必要條件 B.充分條件C.必要條件 D.既不充分又不必要條件【答案】C【解析】【分析】根據(jù)SKIPIF1<0可得到SKIPIF1<0或SKIPIF1<0,進(jìn)而利用充分條件和必要條件的判斷即可求解.【詳解】由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,所以充分性不成立;由SKIPIF1<0可推出SKIPIF1<0成立,所以必要性成立,結(jié)合選項可知:“SKIPIF1<0”是“SKIPIF1<0”的必要條件,故選:SKIPIF1<0.5.設(shè)SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)指數(shù)函數(shù)的單調(diào)性可得SKIPIF1<0,根據(jù)對數(shù)運(yùn)算性質(zhì)和對數(shù)函數(shù)的單調(diào)性可得SKIPIF1<0,即可求解.【詳解】由題意知,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.6.拱券是教堂建筑的主要素材之一,常見的拱券包括半圓拱?等邊哥特拱?弓形拱?馬蹄拱?二心內(nèi)心拱?四心拱?土耳其拱?波斯拱等.如圖,分別以點(diǎn)A和B為圓心,以線段AB為半徑作圓弧,交于點(diǎn)C,等邊哥特拱是由線段AB,SKIPIF1<0,SKIPIF1<0所圍成的圖形.若SKIPIF1<0,則該拱券的面積是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】求出扇形SKIPIF1<0的面積和三角形SKIPIF1<0的面積即得解.【詳解】解:設(shè)SKIPIF1<0的長為SKIPIF1<0.所以扇形SKIPIF1<0的面積為SKIPIF1<0.SKIPIF1<0的面積為SKIPIF1<0.所以該拱券的面積為SKIPIF1<0.故選:D7.已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集是SKIPIF1<0,則不等式SKIPIF1<0的解集是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】首先根據(jù)不等式的解集,利用韋達(dá)定理得到SKIPIF1<0的關(guān)系,再代入求解不等式的解集.【詳解】由條件可知,SKIPIF1<0的兩個實數(shù)根是SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,所以不等式的解集為SKIPIF1<0.故選:A8.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)僅有1個零點(diǎn),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】求出函數(shù)的零點(diǎn),即對稱點(diǎn)的橫坐標(biāo),列出3個相鄰的對稱點(diǎn),由SKIPIF1<0在SKIPIF1<0內(nèi)僅有一個零點(diǎn)可得SKIPIF1<0,解之即可.【詳解】由題意知,令SKIPIF1<0,解得SKIPIF1<0,得函數(shù)SKIPIF1<03個相鄰的對稱點(diǎn)分別為SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)僅有一個零點(diǎn),所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0.故選:C.二?多選題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選铓的得0分.9.已知SKIPIF1<0都是正數(shù),且SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】【分析】根據(jù)不等式的性質(zhì)判斷選項SKIPIF1<0,利用作差法判斷選項SKIPIF1<0.【詳解】對于SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0正確;對于SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則無法判斷SKIPIF1<0的符號,故選項SKIPIF1<0錯誤;對于SKIPIF1<0,因為SKIPIF1<0都是正數(shù),且SKIPIF1<0,所以SKIPIF1<0,故選項SKIPIF1<0正確;對于SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0都是正數(shù),且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0,故選項SKIPIF1<0正確,故選:SKIPIF1<0.10.若函數(shù)SKIPIF1<0在一個周期內(nèi)的圖象如圖所示,則()A.SKIPIF1<0最小正周期為SKIPIF1<0B.SKIPIF1<0的增區(qū)間是SKIPIF1<0C.SKIPIF1<0D.將SKIPIF1<0的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼腟KIPIF1<0倍(縱坐標(biāo)不變)得到SKIPIF1<0的圖象【答案】ABD【解析】【分析】結(jié)合圖象根據(jù)正弦函數(shù)的圖象和性質(zhì)逐項進(jìn)行分析即可求解.【詳解】由圖象可知:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又因為函數(shù)圖象過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,則函數(shù)解析式為:SKIPIF1<0.對于SKIPIF1<0,函數(shù)SKIPIF1<0的最小正周期SKIPIF1<0,故選項SKIPIF1<0正確;對于SKIPIF1<0,因為SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,所以函數(shù)SKIPIF1<0的增區(qū)間是SKIPIF1<0,故選項SKIPIF1<0正確;對于SKIPIF1<0,因為函數(shù)SKIPIF1<0的最小正周期SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選項SKIPIF1<0錯誤;對于SKIPIF1<0,將SKIPIF1<0的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼腟KIPIF1<0倍(縱坐標(biāo)不變)得到SKIPIF1<0,故選項SKIPIF1<0正確,故選:SKIPIF1<0.11.已知函數(shù)SKIPIF1<0,則下列命題正確的是()A.函數(shù)SKIPIF1<0是奇函數(shù)B.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn)C.當(dāng)SKIPIF1<0時,SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】BC【解析】【分析】根據(jù)函數(shù)的奇偶性判斷A;根據(jù)零點(diǎn)的存在性定理判斷B;結(jié)合圖形,根據(jù)函數(shù)的單調(diào)性判斷C;根據(jù)賦值法判斷D.【詳解】A:函數(shù)SKIPIF1<0的定義域為R,關(guān)于原點(diǎn)對稱,SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0為非奇非偶函數(shù),故A錯誤;B:SKIPIF1<0,有SKIPIF1<0,又函數(shù)SKIPIF1<0是連續(xù)的,由零點(diǎn)的存在性定理,得函數(shù)SKIPIF1<0在SKIPIF1<0上存在零點(diǎn),故B正確;C:如圖,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0,且在R上單調(diào)遞減,且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,故C正確;D:SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故D錯誤.故選:BC.12.懸鏈線是平面曲線,是柔性鏈條或纜索兩端固定在兩根支柱頂部,中間自然下垂所形成的外形.在工程中有廣泛的應(yīng)用,例如縣索橋?雙曲拱橋?架空電纜都用到了懸鏈線的原理.當(dāng)微積分尚未出現(xiàn)的伽利略時期,伽利略猜測這種形狀是拋物線.直到1691年萊布尼茲和伯努利利用微積分推導(dǎo)出懸鏈線的方程是SKIPIF1<0,其中SKIPIF1<0為有關(guān)參數(shù).這樣,數(shù)學(xué)上又多了一對與SKIPIF1<0有關(guān)的著名函數(shù)——雙曲函數(shù):雙曲正弦函數(shù)SKIPIF1<0和雙曲余弦函數(shù)SKIPIF1<0.則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】BCD【解析】【分析】根據(jù)新定義,直接運(yùn)算SKIPIF1<0即可判斷A,根據(jù)SKIPIF1<0即可判斷B,結(jié)合同底數(shù)冪的乘法法則,利用作差法即可判斷CD.【詳解】A:SKIPIF1<0SKIPIF1<0,故A錯誤;B:SKIPIF1<0,故B正確;C:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,故C正確;D:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,故D正確.故選:BCD.三?填空題:本題共4小題,每小題5分,共20分.13.函數(shù)SKIPIF1<0定義域為__________.【答案】SKIPIF1<0【解析】【分析】根據(jù)對數(shù)函數(shù)與分式、根式的定義域求解即可.【詳解】由題意,SKIPIF1<0,解得SKIPIF1<0,故函數(shù)的定義域為SKIPIF1<0.故答案為:SKIPIF1<0.14.已知SKIPIF1<0,則SKIPIF1<0的值為__________.【答案】SKIPIF1<0【解析】【分析】根據(jù)角SKIPIF1<0與SKIPIF1<0互補(bǔ),角SKIPIF1<0與SKIPIF1<0的關(guān)系,再結(jié)合誘導(dǎo)公式即可求解.【詳解】由題意可知:SKIPIF1<0,則SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.15.已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0##SKIPIF1<0【解析】【分析】首先將條件變形為SKIPIF1<0,再利用“1”的妙用,結(jié)合基本不等式求SKIPIF1<0的最小值.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<016.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的解集是__________.【答案】SKIPIF1<0【解析】【分析】利用奇偶性求出函數(shù)SKIPIF1<0的解析式SKIPIF1<0,分類討論即可求解.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,因為函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,要解不等式SKIPIF1<0,只需SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,綜上,不等式的解集為SKIPIF1<0.故答案為:SKIPIF1<0.四?解答題:本題6小題,共70分.解答應(yīng)寫出文字說明?證明過程或演算步驟.17.已知集合SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0;(2)若SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)先化簡集合SKIPIF1<0,再利用集合的并集運(yùn)算即可得解;(2)先由條件得到SKIPIF1<0,再對SKIPIF1<0與SKIPIF1<0分兩種情況討論得解.【小問1詳解】因為當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.【小問2詳解】因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0;綜上,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.18.已知SKIPIF1<0,且SKIPIF1<0.求下列各式的值:(1)SKIPIF1<0:(2)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)根據(jù)角的范圍和同角三角函數(shù)的基本關(guān)系得出SKIPIF1<0,進(jìn)一步得到SKIPIF1<0,將式子弦化切即可求解;(2)利用誘導(dǎo)公式將式子化簡為SKIPIF1<0,結(jié)合(1)即可求解.【小問1詳解】因為SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.【小問2詳解】SKIPIF1<0.19.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的值域;(2)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)利用換元法注意新元的范圍及二次函數(shù)的性質(zhì)即可求解;(2)根據(jù)對數(shù)的運(yùn)算性質(zhì)及對數(shù)不等式的解法,將不等式恒成立的問題轉(zhuǎn)化為求函數(shù)的最值問題,結(jié)合基本不等式即可求解.【小問1詳解】令SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,由二次函數(shù)的性質(zhì)知,對稱軸為SKIPIF1<0,開口向上,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最小值為SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最大值為SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.【小問2詳解】因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立等價于SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,SKIPIF1<0即可.因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0,即SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.20.“硬科技”是以人工智能?航空航天?生物技術(shù)?光電芯片?信息技術(shù)?新材料?新能源?智能制造等為代表的高精尖科技,屬于由科技創(chuàng)新構(gòu)成的物理世界,是需要長期研發(fā)投入?持續(xù)積累才能形成的原創(chuàng)技術(shù),具有極高技術(shù)門檻和技術(shù)壁壘,難以被復(fù)制和模仿?最近十年,我國的一大批自主創(chuàng)新的企業(yè)都在打造自己的科技品牌,某高科技企業(yè)自主研發(fā)了一款具有自主知識產(chǎn)權(quán)的高級設(shè)備,并從2023年起全面發(fā)售.經(jīng)測算,生產(chǎn)該高級設(shè)備每年需投入固定成本1000萬元,每生產(chǎn)x百臺高級設(shè)備需要另投成本SKIPIF1<0萬元,且SKIPIF1<0每百臺高級設(shè)備售價為160萬元,假設(shè)每年生產(chǎn)的高級設(shè)備能夠全部售出,且高級設(shè)備年產(chǎn)展最大為10000臺.(1)求企業(yè)獲得年利潤SKIPIF1<0(萬元)關(guān)于年產(chǎn)量SKIPIF1<0(百臺)的函數(shù)關(guān)系式;(2)當(dāng)年產(chǎn)量為多少時,企業(yè)所獲年利潤最大?并求最大年利潤.【答案】(1)SKIPIF1<0;(2)當(dāng)年產(chǎn)量為30百臺時公司獲利最大,且最大利潤為800萬元.【解析】【分析】(1)根據(jù)利潤、成本、收入之間的關(guān)系分類討論即可;(2)當(dāng)SKIPIF1<0時,結(jié)合二次函數(shù)的性質(zhì)求出函數(shù)的最大值;當(dāng)SKIPIF1<0時,利用基本不等式求出函數(shù)的最大值,再比大小,即可求解.【小問1詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0;【小問2詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0(萬元).當(dāng)SKIPIF1<0時,SKIPIF1<0(萬元),當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時,等號成立.因為SKIPIF1<0,所以當(dāng)年產(chǎn)量為30百臺時,公司獲利最大,且最大利潤為800萬元.21.已知函數(shù)SKIPIF1<0的圖象與x軸的兩個相鄰交點(diǎn)之間的距離為SKIPIF1<0,直線SKIPIF1<0是SKIPIF1<0的圖象的一條對稱軸.(1)求函數(shù)SKIPIF1<0的解析式;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有3個零點(diǎn)SKIPIF1<0,請直接寫出SKIPIF1<0的取值范圍,并求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0;SKIPIF1<0【解析】【分析】(1)根據(jù)函數(shù)的圖象性質(zhì),求解函數(shù)的解析式;(2)首先求函數(shù)SKIPIF1<0,將函數(shù)的零點(diǎn)轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,利用數(shù)形結(jié)合求參數(shù)的取值范圍,得到零點(diǎn)的關(guān)系,即可求解.【小問1詳解】由條件可知,周期SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0;【小問2詳解】SKIPIF1<0,當(dāng)SKIPIF1<0,設(shè)SKIPIF1<0,由條件轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0,在SKIPIF1<0上的圖象恰有3個不同的交點(diǎn),作出SKIPIF1<0與SKIPIF1<0的圖象,如圖所示,由圖可知,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.22.對于兩個定義域相同的函數(shù)SKIPIF1<0和SKIPIF1<0,若存在實數(shù)SKIPIF1<0,使SKIPIF1<0,則稱函數(shù)SKIPIF1<0是由“基函數(shù)SKIPIF1<0和SKIPIF1<0”生成的.(1)若SKIPIF1<0是由“基函數(shù)SKIPIF1<0和SKIPIF1<0”生成的,求實數(shù)SKIPIF1<0的值;(2)試?yán)谩盎瘮?shù)SKIPIF1<0和SKIPIF1<0”生成一個函數(shù)SKIPIF1<0,使之滿足SKIPIF1<0為偶函數(shù),且SKIPIF1<0.①求函數(shù)SKIPIF1<0的解析式;②已知SKIPIF1<0,對于區(qū)間SKIPIF1<0上的任意值SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的最小值.(注:SKIPIF1<0.)【答案】(1)SKIPIF1<0;(2)①SKIPIF1<0;②SKIPIF1<0.【解析】【分析】(1)根據(jù)題意,可得SKIPIF1<0,化簡,利用對應(yīng)項的系數(shù)相等即可求解;①設(shè)SKIPIF1<0,根據(jù)函數(shù)SKIPI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生服務(wù)站設(shè)備管理制度
- 衛(wèi)生院庫房存儲管理制度
- 衛(wèi)生院信訪投訴工作制度
- 居委會衛(wèi)生安全管理制度
- 結(jié)核病防控衛(wèi)生管理制度
- 美容院安全衛(wèi)生制度
- 衛(wèi)生室健康檔案管理制度
- 衛(wèi)生室診療管理制度
- 水世界衛(wèi)生管理制度
- 衛(wèi)生間臨期產(chǎn)品管理制度
- DB1331∕T 109-2025 雄安新區(qū)建設(shè)工程抗震設(shè)防標(biāo)準(zhǔn)
- Scratch講座課件教學(xué)課件
- 《低碳醫(yī)院評價指南》(T-SHWSHQ 14-2025)
- 四川省石室中學(xué)2025-2026學(xué)年高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析
- 二年級數(shù)學(xué)計算題專項練習(xí)1000題匯編集錦
- (完整版)小學(xué)一年級20以內(nèi)加減法混合運(yùn)算3000題(每頁100題-已排版)
- GB/T 46509-2025玩具中揮發(fā)性有機(jī)化合物釋放量的測定
- 總公司與分公司承包協(xié)議6篇
- 鋼結(jié)構(gòu)防火涂料應(yīng)用技術(shù)規(guī)程TCECS 24-2020
- 煉鋼生產(chǎn)線自動化控制系統(tǒng)建設(shè)方案
- 塔吊安裝安全培訓(xùn)教育課件
評論
0/150
提交評論