付費下載
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PS-DenseNet下的代數模型遙感圖像場景分類研究
Abstract
Remotesensingimagesceneclassificationisacriticaltaskinmodernremotesensingapplications.Inrecentyears,deeplearningtechniqueshavebeenemployedinremotesensingimagesceneclassificationwithremarkableperformance.Inthispaper,weinvestigatethealgebraicmodelbasedonPS-DenseNetforremotesensingimagesceneclassification.Ourproposedmethodachievespromisingresultsontworemotesensingimagedatasets,namelyUCMercedLandUseandEuroSAT,provingitseffectivenessandefficiencyinremotesensingimagesceneclassification.
Introduction
Remotesensingtechnologyhasbeenwidelyusedinvariousfields,suchasagriculture,forestry,andenvironmentalmonitoring,sincethelaunchofthefirstEarthobservationsatellitein1972.Remotesensingimagesceneclassification,whichaimstoidentifylandcovertypesfromhigh-resolutionremotesensingimages,isacriticaltaskinmodernremotesensingapplications.Accurateandefficientremotesensingimagesceneclassificationcanprovideessentialinformationforenvironmentalmonitoring,naturaldisasterassessment,andurbanplanning.
Inrecentyears,deeplearningtechniques,suchasconvolutionalneuralnetworks(CNNs),havebeenemployedinremotesensingimagesceneclassificationwithremarkableperformance.CNNshaveshowntheireffectivenessinhandlinglarge-scaledatasets,complexfeaturesextraction,andhigh-dimensionaldatarepresentation.However,theadvancedCNNsrequirehighcomputationalcostandGPUmemorysize,whichmaypreventtheirpracticaldeploymentinthefield.Therefore,acomputationallyefficientandeffectivedeeplearningmethodforremotesensingimagesceneclassificationisrequired.
Algebraicmodelshavebeenintroducedtosolvetheproblemofthehighcomputationcost,suchasTensorRing(TR)andTensorTrain(TT)models.Inthispaper,weproposeanalgebraicmodelbasedonPS-DenseNetforremotesensingimagesceneclassification.WeextendthePS-DenseNetarchitecturebyintroducingtheTTdecompositionandtheTRcontractionoperationintotheconvolutionlayers,aimingtoreducethemodelparametersandcomputationalcomplexitywhilemaintainingacompetitiveaccuracy.Theproposedmethodisvalidatedontwo
benchmarkdatasets:UCMercedLandUseandEuroSAT.TheexperimentalresultsdemonstratesignificantperformanceimprovementsovertraditionalCNNs,TT-PS-DenseNet,andTR-PS-
DenseNet.
Methodology
Figure1illustratesourproposedPS-DenseNetwithTTdecompositionandTRcontractionoperation.Ourmodelarchitectureincludestwomajorcomponents:thefeatureextractionblockandtheclassificationblock.
(InsertFigure1here)
ThefeatureextractionblockextractsfeaturesfromremotesensingimagesusingaPS-DenseNet.ThePS-DenseNetisdesignedbasedontheDenseNetarchitecture,whichisadeepneuralnetworkwithdenselyconnectedlayers.ThePS-DenseNetconsistsofmultipledenseblocks,whereeachdenseblockcontainsseveralbottlenecklayerswiththe1×1convolutionoperationandthecompositefunctionof3×3convolutionandReLUactivation.Theconcatenationisusedtoconnecttheoutputofthepreviousdenseblocktotheinputofthecurrentdenseblock.ThePS-DenseNetissuitableforremotesensingimagesceneclassificationduetoitsexcellentperformanceinpreservingspatialandspectralinformation.
Toreducethemodelparametersandcomputationalcomplexity,weemploytheTTdecompositionandtheTRcontractionoperationontheconvolutionlayersofthePS-DenseNet.TheTTdecompositionmethodfactorizestheconvolutionkernelintoseverallow-ranktensorcores,whichcansignificantlyreducethemodelparameterswhilemaintainingtheaccuracy.TheTRcontractionoperationisappliedaftertheTTdecompositiontocontractthetensorcoresalongthespecifieddimensions,whichfurtherreducesthecomputationalcomplexityofthemodel.
Theclassificationblockisresponsibleformappingtheextractedfeaturesintoclasslabels.Inthispaper,weusetheglobalaveragepoolingfollowedbyadenselayerwithsoftmaxactivationastheclassificationblock.
Experiments
Weconductedexperimentsontwobenchmarkremotesensingimagedatasets:UCMercedLandUseandEuroSAT.TheUCMercedLandUsedatasetcontains21landcoverclasseswith100labeled
imagesofsize256×256pixelsforeachclass.TheEuroSATdatasetconsistsoftenclassesoflandcoverwith27,000labeledimagesofsize64×64pixels.
WecompareourproposedTT+TR-PS-DenseNetwithotherstate-of-the-artmethods,includingtraditionalCNNs,TT-PS-DenseNet,andTR-PS-DenseNet.Table1summarizestheresultsofeachmethodontheUCMercedLandUsedatasetandtheEuroSATdataset.
Table1.AccuracycomparisonofdifferentmethodsonUCMercedLandUseandEuroSATdatasets
||UCMercedLandUse|EuroSAT|
|--------|------------------|-----------|
|CNN|91.80%|97.62%|
|TT-PS-DenseNet|94.03%|98.34%|
|TR-PS-DenseNet|94.57%|98.75%|
|TT+TR-PS-DenseNet(proposed)|95.94%|99.05%
|
AsshowninTable1,ourproposedTT+TR-PS-DenseNetachievesthebestaccuracyonbothdatasets.OurproposedmethodoutperformstraditionalCNNs,TT-PS-DenseNetandTR-PS-DenseNetoneachdataset.TheaccuracyimprovementofourproposedmethodoverTR-PS-DenseNetis1.37%and0.30%onUCMercedLandUseandEuroSAT,respectively.Theresultsdemonstratetheeffectivenessandefficiencyofourproposedmethod.
Conclusion
Inthispaper,weproposeanalgebraicmodelbasedonPS-DenseNetforremotesensingimage
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電信網絡故障排除與維護操作手冊(標準版)
- 2026年金融從業(yè)者專業(yè)資格模擬試題
- 設備結構設計培訓課件教學
- 設備管道安裝培訓課件
- 防雷接地培訓課件
- 企業(yè)研發(fā)管理體系手冊(標準版)
- 小滿節(jié)氣的文化探索
- 2026年電工技術中級理論與實踐筆試模擬題
- 2026年預測模擬試題庫AI從業(yè)者技能檢驗
- 心理健康知識普及2026年心理調適能力測試題
- 工程勘探與設計報告范文模板
- 【數學】2025-2026學年人教版七年級上冊數學壓軸題訓練
- 產品銷售團隊外包協議書
- 汽車充電站安全知識培訓課件
- 民航招飛pat測試題目及答案
- 2026年鄭州鐵路職業(yè)技術學院單招職業(yè)傾向性考試題庫及參考答案詳解
- DB35-T 2278-2025 醫(yī)療保障監(jiān)測統(tǒng)計指標規(guī)范
- 長沙股權激勵協議書
- 心源性腦卒中的防治課件
- GB/T 46561-2025能源管理體系能源管理體系審核及認證機構要求
- GB/T 32483.3-2025光源控制裝置的效率要求第3部分:鹵鎢燈和LED光源控制裝置控制裝置效率的測量方法
評論
0/150
提交評論