2024屆河北省秦皇島市撫寧區(qū)臺營區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
2024屆河北省秦皇島市撫寧區(qū)臺營區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
2024屆河北省秦皇島市撫寧區(qū)臺營區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
2024屆河北省秦皇島市撫寧區(qū)臺營區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
2024屆河北省秦皇島市撫寧區(qū)臺營區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆河北省秦皇島市撫寧區(qū)臺營區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該??奎c的位置應(yīng)設(shè)在()A.點A B.點B C.A,B之間 D.B,C之間2.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.3.若正多邊形的一個內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.184.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π5.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關(guān)系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個6.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為()A. B. C. D.7.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且?2≤x≤1時,y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.18.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側(cè)C.當時,的值隨值的增大而減小 D.的最小值為-39.已知M,N,P,Q四點的位置如圖所示,下列結(jié)論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補10.一個多邊形的每個內(nèi)角都等于120°,則這個多邊形的邊數(shù)為()A.4 B.5 C.6 D.711.若一組數(shù)據(jù)2,3,,5,7的眾數(shù)為7,則這組數(shù)據(jù)的中位數(shù)為()A.2 B.3 C.5 D.712.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.14.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要_____cm.15.如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標為__.16.已知一個正六邊形的邊心距為,則它的半徑為______.17.如圖,在平面直角坐標系xOy中,點A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點P順時針旋轉(zhuǎn)30°得到線段PC,連接BC.若點A的坐標為(﹣1,0),則線段BC的長為_____.18.分解因式:2m2-8=_______________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個交點為A,過P(1,﹣m)作PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(1)若m=2,求點A和點C的坐標;(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標軸上是否存在點E,使得△PEC是以P為直角頂點的等腰直角三角形?若存在,求出點E的坐標;若不存在,請說明理由.20.(6分)在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達式及點B的坐標;(2)當﹣2<x<3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經(jīng)過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內(nèi)有兩個公共點,結(jié)合圖象求b的取值范圍.21.(6分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).22.(8分)某校檢測學(xué)生跳繩水平,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?23.(8分)我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)24.(10分)隨著社會經(jīng)濟的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學(xué)興趣小組隨機抽取了我市某單位部分職工進行調(diào)查,對職工購車情況分4類(A:車價40萬元以上;B:車價在20—40萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結(jié)果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:(1)調(diào)查樣本人數(shù)為__________,樣本中B類人數(shù)百分比是_______,其所在扇形統(tǒng)計圖中的圓心角度數(shù)是________;(2)把條形統(tǒng)計圖補充完整;(3)該單位甲、乙兩個科室中未購車人數(shù)分別為2人和3人,現(xiàn)從中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.25.(10分)某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計用平面鏡測量的示意圖如圖②所示,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設(shè)計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.26.(12分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是;(3)請補全條形統(tǒng)計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).27.(12分)二次函數(shù)y=x2﹣2mx+5m的圖象經(jīng)過點(1,﹣2).(1)求二次函數(shù)圖象的對稱軸;(2)當﹣4≤x≤1時,求y的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

此題為數(shù)學(xué)知識的應(yīng)用,由題意設(shè)一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為停靠點,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間??繒r,設(shè)??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間??繒r,設(shè)??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應(yīng)設(shè)在點A;故選A.【點睛】此題為數(shù)學(xué)知識的應(yīng)用,考查知識點為兩點之間線段最短.2、B【解析】

解:過點B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.3、B【解析】設(shè)多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.4、A【解析】

根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點睛】本題考查的知識點是扇形面積的計算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.5、D【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.6、A【解析】

根據(jù)等腰直角三角形的性質(zhì)可得出2S2=S1,根據(jù)數(shù)的變化找出變化規(guī)律“Sn=()n﹣2”,依此規(guī)律即可得出結(jié)論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質(zhì)、勾股定理,解題的關(guān)鍵是利用圖形找出規(guī)律“Sn=()n﹣2”.7、D【解析】

先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時,y隨x的增大而減小;x>-b2a時,y隨x的增大而增大;x=-b2a時,y取得最小值4ac-b24a8、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.9、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.10、C【解析】試題解析:∵多邊形的每一個內(nèi)角都等于120°,∴多邊形的每一個外角都等于180°-120°=10°,∴邊數(shù)n=310°÷10°=1.故選C.考點:多邊形內(nèi)角與外角.11、C【解析】試題解析:∵這組數(shù)據(jù)的眾數(shù)為7,∴x=7,則這組數(shù)據(jù)按照從小到大的順序排列為:2,3,1,7,7,中位數(shù)為:1.故選C.考點:眾數(shù);中位數(shù).12、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設(shè)CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】

∵AB=5,AD=12,∴根據(jù)矩形的性質(zhì)和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為114、1【解析】

要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.15、(-2,7).【解析】

解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點C的坐標為:(﹣4,8).設(shè)直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點E的坐標為:(﹣2,7).故答案為(﹣2,7).16、2【解析】試題分析:設(shè)正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關(guān)系.解題的關(guān)鍵在于利用正多邊形的半徑、邊心距構(gòu)造直角三角形并利用解直角三角形的知識求解.17、22【解析】

只要證明△PBC是等腰直角三角形即可解決問題.【詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【點睛】本題考查翻折變換、坐標與圖形的變化、等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是證明△PBC是等腰直角三角形.18、2(m+2)(m-2)【解析】

先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解因式.【詳解】2m2-8,=2(m2-4),=2(m+2)(m-2)【點睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法,十字相乘等方法分解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點的坐標為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時,函數(shù)解析式為y=,分別令y=0,x=1,即可求得點A和點B的坐標,進而可得到點C的坐標;(2)先用m表示出P,AC三點的坐標,分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點F(x,y)是直線PE上任意一點,過點F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點的等腰直角三角形求得E點坐標.方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點的等腰直角三角形,分別討論E點再x軸上,y軸上的情況求得E點坐標.【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當∠ACP=90°時,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當∠APC=90°時,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點F(x,y)是直線PE上任意一點,過點F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點,使得△PEC是以P為直角頂點的等腰直角三角形,此時E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點E,使得△PEC是以P為直角頂點的等腰直角三角形,此時E(0,﹣4),∴在坐標軸上是存在點E,使得△PEC是以P為直角頂點的等腰直角三角形,E點的坐標為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點E在坐標軸上,∴①當點E在x軸上時,E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當點E在y軸上時,E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì).擴展:設(shè)坐標系中兩點坐標分別為點A(),點B(),則線段AB的長度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.20、(1)拋物線的表達式為y=x2﹣2x﹣2,B點的坐標(﹣1,0);(2)y的取值范圍是﹣3≤y<1.(2)b的取值范圍是﹣<b<.【解析】

(1)、將點A坐標代入求出m的值,然后根據(jù)二次函數(shù)的性質(zhì)求出點B的坐標;(2)、將二次函數(shù)配成頂點式,然后根據(jù)二次函數(shù)的增減性得出y的取值范圍;(2)、根據(jù)函數(shù)經(jīng)過(-1,0)、(3,2)和(0,-2)、(3,2)分別求出兩個一次函數(shù)的解析式,從而得出b的取值范圍.【詳解】(1)∵將A(2,0)代入,得m=1,∴拋物線的表達式為y=-2x-2.令-2x-2=0,解得:x=2或x=-1,∴B點的坐標(-1,0).(2)y=-2x-2=-3.∵當-2<x<1時,y隨x增大而減小,當1≤x<2時,y隨x增大而增大,∴當x=1,y最小=-3.又∵當x=-2,y=1,∴y的取值范圍是-3≤y<1.(2)當直線y=kx+b經(jīng)過B(-1,0)和點(3,2)時,解析式為y=x+.當直線y=kx+b經(jīng)過(0,-2)和點(3,2)時,解析式為y=x-2.由函數(shù)圖象可知;b的取值范圍是:-2<b<.【點睛】本題主要考查的就是二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)以及函數(shù)的交點問題.在解決第二個問題的時候,我們首先必須要明確給出x的取值范圍是否是在對稱軸的一邊還是兩邊,然后根據(jù)函數(shù)圖形進行求解;對于第三問我們必須能夠根據(jù)題意畫出函數(shù)圖象,然后根據(jù)函數(shù)圖象求出取值范圍.在解決二次函數(shù)的題目時,畫圖是非常關(guān)鍵的基本功.21、(1)1;(2).【解析】

(1)先計算乘方、絕對值、負整數(shù)指數(shù)冪和零指數(shù)冪,再計算乘法,最后計算加減運算可得;(2)先將分子、分母因式分解,再計算乘法,最后計算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【點睛】本題主要考查實數(shù)和分式的混合運算,解題的關(guān)鍵是掌握絕對值性質(zhì)、負整數(shù)指數(shù)冪、零指數(shù)冪及分式混合運算順序和運算法則.22、(1)16、84°;(2)C;(3)該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有3000(人)【解析】

(1)根據(jù)百分比=所長人數(shù)÷總?cè)藬?shù),圓心角=百分比,計算即可;(2)根據(jù)中位數(shù)的定義計算即可;(3)用一半估計總體的思考問題即可;【詳解】(1)由題意總?cè)藬?shù)人,D組人數(shù)人;B組的圓心角為;(2)根據(jù)A組6人,B組14人,C組19人,D組16人,E組5人可知本次調(diào)查數(shù)據(jù)中的中位數(shù)落在C組;(3)該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有人.【點睛】本題主要考查了數(shù)據(jù)的統(tǒng)計,熟練掌握扇形圖圓心角度數(shù)求解方法,總體求解方法等相關(guān)內(nèi)容是解決本題的關(guān)鍵.23、工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).∴(米).∴工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.在Rt△BAE和Rt△DEC中,應(yīng)用正切函數(shù)分別求出AE和CE的長即可求得AC的長.24、(1)50,20%,72°.(2)圖形見解析;(3)選出的2人來自不同科室的概率=35【解析】試題分析:(1)根據(jù)調(diào)查樣本人數(shù)=A類的人數(shù)除以對應(yīng)的百分比.樣本中B類人數(shù)百分比=B類人數(shù)除以總?cè)藬?shù),B類人數(shù)所在扇形統(tǒng)計圖中的圓心角度數(shù)=B類人數(shù)的百分比×360°.(2)先求出樣本中B類人數(shù),再畫圖.(3)畫樹狀圖并求出選出的2人來自不同科室的概率.試題解析:(1)調(diào)查樣本人數(shù)為4÷8%=50(人),樣本中B類人數(shù)百分比(50﹣4﹣28﹣8)÷50=20%,B類人數(shù)所在扇形統(tǒng)計圖中的圓心角度數(shù)是20%×360°=72°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論