巢湖市重點(diǎn)中學(xué)2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第1頁(yè)
巢湖市重點(diǎn)中學(xué)2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第2頁(yè)
巢湖市重點(diǎn)中學(xué)2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第3頁(yè)
巢湖市重點(diǎn)中學(xué)2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第4頁(yè)
巢湖市重點(diǎn)中學(xué)2024屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

巢湖市重點(diǎn)中學(xué)2024屆高一下數(shù)學(xué)期末調(diào)研試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在空間四邊形中,,,,分別是,的中點(diǎn),,則異面直線與所成角的大小為()A. B. C. D.2.正六邊形的邊長(zhǎng)為,以頂點(diǎn)為起點(diǎn),其他頂點(diǎn)為終點(diǎn)的向量分別為;以頂點(diǎn)為起點(diǎn),其他頂點(diǎn)為終點(diǎn)的向量分別為.若分別為的最小值、最大值,其中,則下列對(duì)的描述正確的是()A. B. C. D.3.在等差數(shù)列中,已知,數(shù)列的前5項(xiàng)的和為,則()A. B. C. D.4.已知=4,=3,,則與的夾角為()A. B. C. D.5.在三棱柱中,各棱長(zhǎng)相等,側(cè)棱垂直于底面,點(diǎn)是側(cè)面的中心,則與平面所成角的大小是()A. B. C. D.6.若,均為銳角,且,,則等于()A. B. C. D.7.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角8.高一某班男生36人,女生24人,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為的樣本,若抽出的女生為12人,則的值為()A.18 B.20 C.30 D.369.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:廣告費(fèi)用(萬(wàn)元)

4

2

3

5

銷售額(萬(wàn)元)

49

26

39

54

根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為A.63.6萬(wàn)元 B.65.5萬(wàn)元 C.67.7萬(wàn)元 D.72.0萬(wàn)元10.設(shè),若關(guān)于的不等式在區(qū)間上有解,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,則與的夾角是_________.12.在封閉的直三棱柱內(nèi)有一個(gè)表面積為的球,若,則的最大值是_______.13.在棱長(zhǎng)均為2的三棱錐中,分別為上的中點(diǎn),為棱上的動(dòng)點(diǎn),則周長(zhǎng)的最小值為_(kāi)_______.14.下列說(shuō)法中:①若,滿足,則的最大值為;②若,則函數(shù)的最小值為③若,滿足,則的最小值為④函數(shù)的最小值為正確的有__________.(把你認(rèn)為正確的序號(hào)全部寫(xiě)上)15.在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對(duì)稱.若,則=___________.16.設(shè)ω為正實(shí)數(shù).若存在a、b(π≤a<b≤2π),使得三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,在三棱柱中,是邊長(zhǎng)為4的正三角形,側(cè)面是矩形,分別是線段的中點(diǎn).(1)求證:平面;(2)若平面平面,,求三棱錐的體積.18.已知,(1)求;(2)若,求.19.已知.(1)當(dāng)時(shí),求數(shù)列前n項(xiàng)和;(用和n表示);(2)求.20.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對(duì)的邊分別為,,,若,且為鈍角,,求面積的最大值.21.已知向量,,且,.(1)求函數(shù)和的解析式;(2)求函數(shù)的遞增區(qū)間;(3)若函數(shù)的最小值為,求λ值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

平移兩條異面直線到相交,根據(jù)余弦定理求解.【詳解】如圖所示:設(shè)的中點(diǎn)為,連接,所以,則是所成的角或其補(bǔ)角,又根據(jù)余弦定理得:,所以,異面直線與所成角的為,故選D.【點(diǎn)睛】本題考查異面直線所成的角和余弦定理.注意異面直線所成的角的取值范圍是.2、A【解析】

利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,從而得到結(jié)論.【詳解】由題意,以頂點(diǎn)A為起點(diǎn),其他頂點(diǎn)為終點(diǎn)的向量分別為,以頂點(diǎn)D為起點(diǎn),其他頂點(diǎn)為終點(diǎn)的向量分別為,則利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,又因?yàn)榉謩e為的最小值、最大值,所以,故選A.【點(diǎn)睛】本題主要考查了向量的數(shù)量積運(yùn)算,其中解答中熟記向量的數(shù)量積的運(yùn)算公式,分析出向量數(shù)量積的正負(fù)是關(guān)鍵,著重考查了分析解決問(wèn)題的能力,屬于中檔試題.3、C【解析】

由,可求出,結(jié)合,可求出及.【詳解】設(shè)數(shù)列的前項(xiàng)和為,公差為,因?yàn)椋裕瑒t,故.故選C.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和,考查了等差數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.4、C【解析】

由已知中,,,我們可以求出的值,進(jìn)而根據(jù)數(shù)量積的夾角公式,求出,,進(jìn)而得到向量與的夾角;【詳解】,,,,,所以向量與的夾角為.故選C【點(diǎn)睛】本題主要考查平面向量的數(shù)量積運(yùn)算和向量的夾角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.5、C【解析】

如圖,取中點(diǎn),則平面,故,因此與平面所成角即為,設(shè),則,,即,故,故選C.6、B【解析】

先利用兩角和的余弦公式求出,通過(guò)條件可求得,進(jìn)而可得.【詳解】解:,因?yàn)?,則,故,故選:B.【點(diǎn)睛】本題考查兩角和的正切公式,注意角的范圍的確定,是基礎(chǔ)題.7、C【解析】

本題首先要明確平面直角坐標(biāo)系中每一象限所對(duì)應(yīng)的角的范圍,然后即可判斷出在哪一象限中.【詳解】第一象限所對(duì)應(yīng)的角為;第二象限所對(duì)應(yīng)的角為;第三象限所對(duì)應(yīng)的角為;第四象限所對(duì)應(yīng)的角為;因?yàn)?,所以位于第三象限,故選C.【點(diǎn)睛】本題考查如何判斷角所在象限,能否明確每一象限所對(duì)應(yīng)的角的范圍是解決本題的關(guān)鍵,考查推理能力,是簡(jiǎn)單題.8、C【解析】

根據(jù)分層抽樣等比例抽樣的特點(diǎn),進(jìn)行計(jì)算即可.【詳解】根據(jù)題意,可得,解得.故選:C.【點(diǎn)睛】本題考查分層抽樣的等比例抽取的性質(zhì),屬基礎(chǔ)題.9、B【解析】

試題分析:,∵數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,回歸方程中的為1.4,∴42=1.4×2.5+a,∴=1.1,∴線性回歸方程是y=1.4x+1.1,∴廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為1.4×6+1.1=3.5考點(diǎn):線性回歸方程10、D【解析】

根據(jù)題意得不等式對(duì)應(yīng)的二次函數(shù)開(kāi)口向上,分別討論三種情況即可.【詳解】由題意得:當(dāng)當(dāng)當(dāng)綜上所述:,選D.【點(diǎn)睛】本題主要考查了含參一元二次不等式中參數(shù)的取值范圍.解這類題通常分三種情況:.有時(shí)還需要結(jié)合韋達(dá)定理進(jìn)行解決.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用向量的數(shù)量積直接求出向量的夾角即可.【詳解】由題知,,因?yàn)?,所以與的夾角為.故答案為:.【點(diǎn)睛】本題考查了利用向量的數(shù)量積求解向量的夾角,屬于基礎(chǔ)題.12、【解析】

根據(jù)已知可得直三棱柱的內(nèi)切球半徑為,代入球的表面積公式,即可求解.【詳解】由題意,因?yàn)?,所?可得的內(nèi)切圓的半徑為,又由,故直三棱柱的內(nèi)切球半徑為,所以此時(shí)的最大值為.故答案為:.【點(diǎn)睛】本題主要考查了直三棱柱的幾何結(jié)構(gòu)特征,以及組合體的性質(zhì)和球的表面積的計(jì)算,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.13、【解析】

易證明中,且周長(zhǎng)為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長(zhǎng)均為2的三棱錐,故該三棱錐的四個(gè)面均為正三角形.又因?yàn)?故.故.且分別為上的中點(diǎn),故.故周長(zhǎng)為.故只需求的最小值即可.易得當(dāng)時(shí)取得最小值為.故周長(zhǎng)的最小值為.故答案為:【點(diǎn)睛】本題主要考查了立體幾何中的距離最值問(wèn)題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.14、③④【解析】

①令,得出,再利用雙勾函數(shù)的單調(diào)性判斷該命題的正誤;②將函數(shù)解析式變形為,利用基本不等式判斷該命題的正誤;③由得出,得出,利用基本不等式可判斷該命題的正誤;④將代數(shù)式與代數(shù)式相乘,展開(kāi)后利用基本不等式可求出的最小值,進(jìn)而判斷出該命題的正誤?!驹斀狻竣儆傻茫瑒t,則,設(shè),則,則,則上減函數(shù),則上為增函數(shù),則時(shí),取得最小值,當(dāng)時(shí),,故的最大值為,錯(cuò)誤;②若,則函數(shù),則,即函數(shù)的最大值為,無(wú)最小值,故錯(cuò)誤;③若,滿足,則,則,由,得,則,當(dāng)且僅當(dāng),即得,即時(shí)取等號(hào),即的最小值為,故③正確;④,當(dāng)且僅當(dāng),即,即時(shí),取等號(hào),即函數(shù)的最小值為,故④正確,故答案為:③④?!军c(diǎn)睛】本題考查利用基本不等式來(lái)判斷命題的正誤,利用基本不等式需注意滿足“一正、二定、三相等”這三個(gè)條件,同時(shí)注意結(jié)合雙勾函數(shù)單調(diào)性來(lái)考查,屬于中等題。15、【解析】試題分析:因?yàn)楹完P(guān)于軸對(duì)稱,所以,那么,(或),所以.【考點(diǎn)】同角三角函數(shù),誘導(dǎo)公式,兩角差的余弦公式【名師點(diǎn)睛】本題考查了角的對(duì)稱關(guān)系,以及誘導(dǎo)公式,常用的一些對(duì)稱關(guān)系包含:若與的終邊關(guān)于軸對(duì)稱,則,若與的終邊關(guān)于軸對(duì)稱,則,若與的終邊關(guān)于原點(diǎn)對(duì)稱,則.16、ω∈[【解析】

由sinωa+sinωb=2?sinωa=sinωb=1.而[ωa,ωb]?[ωπ,2ωπ]【詳解】由sinωa+而[ωa,ωb]?[ωπ,2ωπ],故已知條件等價(jià)于:存在整數(shù)ωπ當(dāng)ω≥4時(shí),區(qū)間[ωπ,2ωπ]的長(zhǎng)度不小于4π當(dāng)0<ω<4時(shí),注意到,[ωπ故只要考慮如下幾種情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9綜上,并注意到ω≥4也滿足條件,知ω∈[9故答案為:ω∈[【點(diǎn)睛】本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)取中點(diǎn)為,連接,由中位線定理證得,即證得平行四邊形,于是有,這樣就證得線面平行;(2)由等體積法變換后可計(jì)算.【詳解】證明:(1)取中點(diǎn)為,連接,是平行四邊形,平面,平面,∴平面解:(2)是線段中點(diǎn),則【點(diǎn)睛】本題考查線面平行的判定,考查棱錐的體積.線面平行的證明關(guān)鍵是找到線線平行,而棱錐的體積常常用等積變換,轉(zhuǎn)化頂點(diǎn)與底.18、(1)(2)【解析】

(1)兩邊平方可得,根據(jù)同角公式可得,;(2)根據(jù)兩角和的正切公式,計(jì)算可得結(jié)果.【詳解】(1)因?yàn)?,所以,?因?yàn)?,所以,所以,?(2)因?yàn)椋?,所?【點(diǎn)睛】本題考查了兩角同角公式,二倍角正弦公式,兩角和的正切公式,屬于基礎(chǔ)題.19、(1)時(shí),時(shí),;(2);【解析】

(1)當(dāng)時(shí),求出,再利用錯(cuò)位相減法,求出的前項(xiàng)和;(2)求出的表達(dá)式,對(duì),的大小進(jìn)行分類討論,從而求出數(shù)列的極限.【詳解】(1)當(dāng)時(shí),可得,當(dāng)時(shí),得到,所以,當(dāng)時(shí),所以,兩邊同乘得上式減去下式得,所以所以綜上所述,時(shí),;時(shí),.(2)由(1)可知當(dāng)時(shí),則;當(dāng)時(shí),則若,若,所以綜上所述.【點(diǎn)睛】本題考查錯(cuò)位相減法求數(shù)列的和,數(shù)列的極限,涉及分類討論的思想,屬于中檔題.20、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】

(1)利用二倍角和輔助角公式可化簡(jiǎn)函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:?jiǎn)握{(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時(shí)取等號(hào))即面積的最大值為:【點(diǎn)睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問(wèn)題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識(shí);求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過(guò)與正弦函數(shù)圖象的對(duì)應(yīng)關(guān)系來(lái)進(jìn)行求解.21、(1),(2)遞增區(qū)間為,(3)【解析】

(1)根據(jù)向量的數(shù)量積坐標(biāo)運(yùn)算,以及模長(zhǎng)的求解公式,即可求得兩個(gè)函數(shù)的解析式;(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論