四川省成都龍泉中學(xué)2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
四川省成都龍泉中學(xué)2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
四川省成都龍泉中學(xué)2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
四川省成都龍泉中學(xué)2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
四川省成都龍泉中學(xué)2024年高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省成都龍泉中學(xué)2024年高三第二次聯(lián)考數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.2.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.363.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.4.已知集合,,則為()A. B. C. D.5.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.6.是虛數(shù)單位,則()A.1 B.2 C. D.7.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.28.一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.9.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.10.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且11.如圖是一個(gè)算法流程圖,則輸出的結(jié)果是()A. B. C. D.12.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記實(shí)數(shù)中的最大數(shù)為,最小數(shù)為.已知實(shí)數(shù)且三數(shù)能構(gòu)成三角形的三邊長,若,則的取值范圍是.14.在的展開式中,的系數(shù)等于__.15.已知兩動(dòng)點(diǎn)在橢圓上,動(dòng)點(diǎn)在直線上,若恒為銳角,則橢圓的離心率的取值范圍為__________.16.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),求函數(shù)在上最小值.18.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.19.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實(shí)數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.20.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.21.(12分)已知函數(shù)(,)滿足下列3個(gè)條件中的2個(gè)條件:①函數(shù)的周期為;②是函數(shù)的對(duì)稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請(qǐng)指出這二個(gè)條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.22.(10分)在,角、、所對(duì)的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

設(shè),通過,再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.2、B【解析】

方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡(jiǎn)可得,即,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,從而的最小值為16,故選B.3、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.4、C【解析】

分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧?,,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.5、B【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時(shí),檢驗(yàn)可得,A、C、D都不正確,故選:B.【點(diǎn)睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).6、C【解析】

由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.7、C【解析】

利用等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.8、C【解析】

根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點(diǎn)睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.9、A【解析】

根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡(jiǎn)、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡(jiǎn)、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、D【解析】

首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長度,進(jìn)一步求出個(gè)各棱長.【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點(diǎn)睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.11、A【解析】

執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計(jì)算結(jié)果,故選A.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12、A【解析】

根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:顯然,又,①當(dāng)時(shí),,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點(diǎn)分別是(1,1)和,從而②當(dāng)時(shí),,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點(diǎn)分別是(1,1)和,從而綜上所述,的取值范圍是.考點(diǎn):不等式、簡(jiǎn)單線性規(guī)劃.14、7【解析】

由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,屬基礎(chǔ)題.15、【解析】

根據(jù)題意可知圓上任意一點(diǎn)向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點(diǎn)向橢圓所引的兩條切線互相垂直,因此當(dāng)直線與圓相離時(shí),恒為銳角,故,解得從而離心率.故答案為:【點(diǎn)睛】本題主要考查了橢圓的幾何性質(zhì),考查了邏輯分析能力,屬于中檔題.16、【解析】

求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點(diǎn)睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最小值是【解析】

(1)求出導(dǎo)函數(shù),并且解出它的零點(diǎn)x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;

(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時(shí),函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時(shí),函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域

為.

因?yàn)椋?,可得?/p>

當(dāng)時(shí),;當(dāng)時(shí),,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時(shí),函數(shù)在區(qū)間上是減函數(shù),

的最小值是當(dāng),即時(shí),函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時(shí),函數(shù)在上是增函數(shù),在上是減函數(shù).

又,

當(dāng)時(shí),的最小值是;

當(dāng)時(shí),的最小值為綜上所述,結(jié)論為當(dāng)時(shí),函數(shù)的最小值是;

當(dāng)時(shí),函數(shù)的最小值是.【點(diǎn)睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個(gè)極值點(diǎn),則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點(diǎn)值的函數(shù)值與極值的大小18、(1)見解析;(2)【解析】

(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面的法向量為,∴,令得.設(shè)平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對(duì)值符號(hào),可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因?yàn)?,要證,只需證,即證,只需證即可得結(jié)果.試題解析:(1)去絕對(duì)值符號(hào),可得所以,所以,解得,所以實(shí)數(shù)的取值范圍為.(2)由(1)知,,所以.因?yàn)?,所以要證,只需證,即證,即證.因?yàn)椋灾恍枳C,因?yàn)?,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設(shè):證明:x+y-2xy==令,∴原式====當(dāng)時(shí),20、(1);(2)4.【解析】

(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進(jìn)而求得,利用同角三角函數(shù)的基本關(guān)系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.21、(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次討論①②成立,①③成立,②③成立,計(jì)算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論