版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省大豐區(qū)新豐中學(xué)高三一診考試新高考數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交2.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn).則雙曲線的離心率是()A. B. C. D.3.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.4.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定5.偶函數(shù)關(guān)于點(diǎn)對稱,當(dāng)時,,求()A. B. C. D.6.函數(shù)的大致圖像為()A. B.C. D.7.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:8.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.9.已知向量,,,若,則()A. B. C. D.10.若數(shù)列滿足且,則使的的值為()A. B. C. D.11.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為()A. B.C. D.12.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)P是直線y=x+1上的動點(diǎn),點(diǎn)Q是拋物線y=x2上的動點(diǎn).設(shè)點(diǎn)M為線段PQ的中點(diǎn),O為原點(diǎn),則14.在邊長為2的正三角形中,,則的取值范圍為______.15.已知,則______,______.16.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).(1)求橢圓C的方程;(2)設(shè)點(diǎn),為橢圓C上的兩個動點(diǎn),當(dāng)為多少時,點(diǎn)O到直線MN的距離為定值.18.(12分)已知函數(shù).(1)求證:當(dāng)時,;(2)若對任意存在和使成立,求實(shí)數(shù)的最小值.19.(12分)已知傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(diǎn)(異于頂點(diǎn)),過做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點(diǎn)、,記拋物線在點(diǎn)的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).20.(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.21.(12分)中,內(nèi)角的對邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.22.(10分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進(jìn)行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時,有3個坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時,用表示要補(bǔ)播種的坑的個數(shù),求的分布列與數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【點(diǎn)睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.2、B【解析】
由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.3、B【解析】
分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點(diǎn)睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時考查了計(jì)算能力,屬于中等題.4、B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.5、D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.6、D【解析】
通過取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時,,排除B和C;當(dāng)時,,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.7、C【解析】
根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項(xiàng).【詳解】,,∴等價于,故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.8、D【解析】
與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點(diǎn)睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.9、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.10、C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.11、B【解析】
選B.考點(diǎn):圓心坐標(biāo)12、B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當(dāng)直線相切時距離最小,計(jì)算得到答案.【詳解】如圖所示:過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點(diǎn)M為線段PQ的中點(diǎn),故M在直線y=x+38時距離最小,故故答案為:32【點(diǎn)睛】本題考查了拋物線中距離的最值問題,轉(zhuǎn)化為切線問題是解題的關(guān)鍵.14、【解析】
建立直角坐標(biāo)系,依題意可求得,而,,,故可得,且,由此構(gòu)造函數(shù),,利用二次函數(shù)的性質(zhì)即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標(biāo)系,則,,,設(shè),,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設(shè),,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時注意通過設(shè)元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題.15、【解析】
利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進(jìn)而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點(diǎn)睛】本題主要考查三角函數(shù)值的計(jì)算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應(yīng)用,難度不大.16、【解析】
,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時,等號成立.當(dāng)時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)=0時,點(diǎn)O到直線MN的距離為定值.【解析】
(1)的面積最大時,是短軸端點(diǎn),由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達(dá)定理得,注意,一是計(jì)算,二是計(jì)算原點(diǎn)到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因?yàn)樵跈E圓上,當(dāng)是短軸端點(diǎn)時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為.(2)在時,設(shè)直線方程為,原點(diǎn)到此直線的距離為,即,由,得,,,所以,,,所以當(dāng)時,,,為常數(shù).若,則,,,,,綜上所述,當(dāng)=0時,點(diǎn)O到直線MN的距離為定值.【點(diǎn)睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運(yùn)算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時常用此法通過韋達(dá)定理聯(lián)系已知式與待求式.18、(1)見解析;(2)【解析】
(1)不等式等價于,設(shè),利用導(dǎo)數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可得在上有兩個不同零點(diǎn),且,利用導(dǎo)數(shù)討論的單調(diào)性后可得其最小值,結(jié)合前述的集合的包含關(guān)系可得的取值范圍.【詳解】(1)設(shè),則,當(dāng)時,由,所以在上是減函數(shù),所以,故.因?yàn)?,所以,所以?dāng)時,.(2)由(1)當(dāng)時,;任意,存在和使成立,所以在上有兩個不同零點(diǎn),且,(1)當(dāng)時,在上為減函數(shù),不合題意;(2)當(dāng)時,,由題意知在上不單調(diào),所以,即,當(dāng)時,,時,,所以在上遞減,在上遞增,所以,解得,因?yàn)?,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因?yàn)?,所以時命題成立.因?yàn)?,所?故實(shí)數(shù)的最小值為.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立、等式能成立中的應(yīng)用,前者注意將欲證不等式合理變形,轉(zhuǎn)化為容易證明的新不等式,后者需根據(jù)等式能成立的特點(diǎn)確定出函數(shù)應(yīng)該具有的性質(zhì),再利用導(dǎo)數(shù)研究該性質(zhì),本題屬于難題.19、(1)(2)證明見解析【解析】
(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進(jìn)而得到,再利用點(diǎn)差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進(jìn)而可得與互補(bǔ).【詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補(bǔ).【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問題解決問題的能力,屬于中檔題.20、(1)(2)【解析】
(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點(diǎn)睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長的范圍問題.屬于中檔題.21、(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運(yùn)算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.22、(1)當(dāng)或時,有3個坑要補(bǔ)播種的概率最大,最大概率為;(2)見解析.【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 罕見腫瘤的精準(zhǔn)醫(yī)療與個體化治療
- 預(yù)算評審質(zhì)量控制制度
- 2026年咸陽市高新一中教師招聘備考題庫及答案詳解(考點(diǎn)梳理)
- 罕見腫瘤的個體化治療治療策略優(yōu)化經(jīng)驗(yàn)與推廣
- 2025年建筑施工企業(yè)收發(fā)文管理制度
- 出納與財(cái)務(wù)制度
- 非稅收入財(cái)務(wù)制度
- 養(yǎng)豬小規(guī)模企業(yè)財(cái)務(wù)制度
- 餐廳收銀財(cái)務(wù)制度
- 地產(chǎn)項(xiàng)目財(cái)務(wù)制度
- 中國全色盲診療專家共識2026
- 鋼鐵工藝流程課件
- 自流平地面施工安全方案
- 2025年湖北煙草專賣局考試真題
- 2025年小學(xué)六年級數(shù)學(xué)試題探究題
- 《海南省工程勘察設(shè)計(jì)收費(fèi)導(dǎo)則(試行)》
- 紋樣設(shè)計(jì)上課課件
- 密閉施工安全培訓(xùn)課件
- 人工智能賦能循證教學(xué)研究
- 建筑工程勞務(wù)人員管理制度與實(shí)施策略
- 濟(jì)南版小學(xué)數(shù)學(xué)一年級上冊期中考試題及答案
評論
0/150
提交評論