版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市二十九中學2024屆中考數(shù)學全真模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下列幾何體中三視圖完全相同的是()A. B. C. D.2.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.3.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.34.的絕對值是()A. B. C. D.5.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.6.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A. B. C.且 D.7.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.8.下列各組單項式中,不是同類項的一組是()A.和 B.和 C.和 D.和39.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤10.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近二、填空題(本大題共6個小題,每小題3分,共18分)11.使有意義的x的取值范圍是______.12.“五一”期間,一批九年級同學包租一輛面包車前去竹海游覽,面包車的租金為300元,出發(fā)時,又增加了4名同學,且租金不變,這樣每個同學比原來少分攤了20元車費.若設參加游覽的同學一共有x人,為求x,可列方程_____.13.圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.14.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為,表示慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為______.15.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)33016.《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.三、解答題(共8題,共72分)17.(8分)計算:()-1+()0+-2cos30°.18.(8分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數(shù)y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.19.(8分)如圖,將平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處.(1)連接CF,求證:四邊形AECF是菱形;(2)若E為BC中點,BC=26,tan∠B=,求EF的長.20.(8分)4月9日上午8時,2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個孩子一同參加了比賽,下面是兩個孩子與記者的對話:根據對話內容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.21.(8分)在平面直角坐標系中,函數(shù)()的圖象經過點(4,1),直線與圖象交于點,與軸交于點.求的值;橫、縱坐標都是整數(shù)的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.①當時,直接寫出區(qū)域內的整點個數(shù);②若區(qū)域內恰有4個整點,結合函數(shù)圖象,求的取值范圍.22.(10分)先化簡,再在1,2,3中選取一個適當?shù)臄?shù)代入求值.23.(12分)如圖,在航線l的兩側分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結果精確到0.1km/h).(參考數(shù)據:≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)24.如下表所示,有A、B兩組數(shù):第1個數(shù)第2個數(shù)第3個數(shù)第4個數(shù)……第9個數(shù)……第n個數(shù)A組﹣6﹣5﹣2……58……n2﹣2n﹣5B組14710……25……(1)A組第4個數(shù)是;用含n的代數(shù)式表示B組第n個數(shù)是,并簡述理由;在這兩組數(shù)中,是否存在同一列上的兩個數(shù)相等,請說明.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.2、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.3、D【解析】設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖象可得出點B的坐標,根據三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結論.
解:設△OAC和△BAD的直角邊長分別為a、b,
則點B的坐標為(a+b,a﹣b).∵點B在反比例函數(shù)的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=1.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
故選D.點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質以及面積公式,解題的關鍵是找出a2﹣b2的值.解決該題型題目時,要設出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標是關鍵.4、C【解析】
根據數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.【點睛】錯因分析
容易題,失分原因:未掌握絕對值的概念.5、D【解析】
根據k>0,k<0,結合兩個函數(shù)的圖象及其性質分類討論.【詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【點睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.6、C【解析】
根據一元二次方程的定義結合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結論.【詳解】解:∵關于x的一元二次方程有兩個不相等的實數(shù)根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據一元二次方程的定義結合根的判別式列出關于a的一元一次不等式組是解題的關鍵.7、B【解析】
由正數(shù)大于一切負數(shù),負數(shù)小于0,正數(shù)大于0,兩個負數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,
∴其中最小的實數(shù)為-2;
故選:B.【點睛】本題考查了實數(shù)的大小比較,關鍵是掌握:正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù)絕對值大的反而小.8、A【解析】
如果兩個單項式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱這兩個單項式為同類項.【詳解】根據題意可知:x2y和2xy2不是同類項.故答案選:A.【點睛】本題考查了單項式與多項式,解題的關鍵是熟練的掌握單項式與多項式的相關知識點.9、D【解析】
根據正方形的性質可得AB=BC=AD,∠ABC=∠BAD=90°,再根據中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據鄰補角的定義可得∠AME=90°,從而判斷①正確;根據中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據直角三角形的性質判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據正方形的性質求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據正方形的性質,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.10、D【解析】
根據概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】二次根式有意義的條件.【分析】根據二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內有意義,必須.12、﹣=1.【解析】原有的同學每人分擔的車費應該為,而實際每人分擔的車費為,方程應該表示為:﹣=1.故答案是:﹣=1.13、1.【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據△AOD的面積為1列出關系式是解題的關鍵.14、【解析】
直接利用已知點坐標得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標確定位置,正確得出原點的位置是解題關鍵.15、不合理,樣本數(shù)據不具有代表性【解析】
根據表中所取的樣本不具有代表性即可得到結論.【詳解】不合理,樣本數(shù)據不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【點睛】本題考查了統(tǒng)計表,認真分析表中數(shù)據是解題的關鍵.16、【解析】分析:由正方形的性質得到∠EDG=90°,從而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性質得到CK:KD=HD:HA,求解即可得到結論.詳解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案為:.點睛:本題考查了相似三角形的應用.解題的關鍵是證明△CKD∽△DHA.三、解答題(共8題,共72分)17、4+2.【解析】
原式第一項利用負指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項化為最簡二次根式,最后一項利用特殊角的三角函數(shù)值計算即可得到結果.【詳解】原式=3+1+3-2×=4+2.18、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】
(1)利用反比例函數(shù)圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數(shù)法即可求出直線AB的解析式;(1)根據函數(shù)圖像判斷即可;(3)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數(shù)圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次(反比例)函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關鍵是:(1)根據點的坐標利用待定系數(shù)法求出直線AB的解析式;(1)根據函數(shù)圖像判斷不等式取值范圍;(3)根據三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.19、(1)證明見解析;(2)EF=1.【解析】
(1)如圖1,利用折疊性質得EA=EC,∠1=∠2,再證明∠1=∠3得到AE=AF,則可判斷四邊形AECF為平行四邊形,從而得到四邊形AECF為菱形;(2)作EH⊥AB于H,如圖,利用四邊形AECF為菱形得到AE=AF=CE=13,則判斷四邊形ABEF為平行四邊形得到EF=AB,根據等腰三角形的性質得AH=BH,再在Rt△BEH中利用tanB==可計算出BH=5,從而得到EF=AB=2BH=1.【詳解】(1)證明:如圖1,∵平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處,∴EA=EC,∠1=∠2,∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四邊形AECF為平行四邊形,∵EA=EC,∴四邊形AECF為菱形;(2)解:作EH⊥AB于H,如圖,∵E為BC中點,BC=26,∴BE=EC=13,∵四邊形AECF為菱形,∴AE=AF=CE=13,∴AF=BE,∴四邊形ABEF為平行四邊形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB==,設EH=12x,BH=5x,則BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【點睛】本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了平行四邊形的性質、菱形的判定與性質.20、今年妹妹6歲,哥哥10歲.【解析】
試題分析:設今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據兩個孩子的對話,即可得出關于x、y的二元一次方程組,解之即可得出結論.試題解析:設今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據題意得:解得:.答:今年妹妹6歲,哥哥10歲.考點:二元一次方程組的應用.21、(1)4;(2)①3個.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根據點(4,1)在()的圖象上,即可求出的值;(2)①當時,根據整點的概念,直接寫出區(qū)域內的整點個數(shù)即可.②分.當直線過(4,0)時,.當直線過(5,0)時,.當直線過(1,2)時,.當直線過(1,3)時四種情況進行討論即可.詳解:(1)解:∵點(4,1)在()的圖象上.∴,∴.(2)①3個.(1,0),(2,0),(3,0).②.當直線過(4,0)時:,解得.當直線過(5,0)時:,解得.當直線過(1,2)時:,解得.當直線過(1,3)時:,解得∴綜上所述:或.點睛:屬于反比例函數(shù)和一次函數(shù)的綜合題,考查待定系數(shù)法求反比例函數(shù)解析式,一次函數(shù)的圖象與性質,掌握整點的概念是解題的關鍵,注意分類討論思想在解題中的應用.22、,當x=2時,原式=.【解析】試題分析:先括號內通分,然后計算除法,最后取值時注意使得分式有意義,最后代入化簡即可.試題解析:原式===當x=2時,原式=.23、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學大二(旅游管理)旅游經濟學階段測試題及答案
- 2025年高職花卉(鑒別技巧)試題及答案
- 2025年大學大二(口腔醫(yī)學技術)義齒修復工藝綜合測試題
- 2025年高職物理教育(物理教學方法)試題及答案
- 2025年高職物流管理(倉儲配送優(yōu)化)試題及答案
- 新建1個7萬噸級散糧卸船泊位項目可行性研究報告模板立項申批備案
- 狗狗職業(yè)發(fā)展規(guī)劃演講稿
- 社群營銷介紹宣傳
- 2026廣西桂林航天工業(yè)學院招聘高層次人才10人備考題庫完整參考答案詳解
- 2026新疆昆東經濟技術開發(fā)區(qū)管委會招聘19人備考題庫及答案詳解(新)
- GB/T 43824-2024村鎮(zhèn)供水工程技術規(guī)范
- 心力衰竭藥物治療的經濟評估與成本效益分析
- 道路綠化養(yǎng)護投標方案(技術方案)
- QA出貨檢驗日報表
- 校服采購投標方案
- 中外建筑史課件
- 母嬰保健-助產技術理論考核試題題庫及答案
- dd5e人物卡可填充格式角色卡夜版
- ??怂箍禉C器操作說明書
- GB/T 6003.1-1997金屬絲編織網試驗篩
- GB/T 24207-2009洗油酚含量的測定方法
評論
0/150
提交評論