吉林省輝煌聯(lián)盟九校新高考適應性考試數(shù)學試卷及答案解析_第1頁
吉林省輝煌聯(lián)盟九校新高考適應性考試數(shù)學試卷及答案解析_第2頁
吉林省輝煌聯(lián)盟九校新高考適應性考試數(shù)學試卷及答案解析_第3頁
吉林省輝煌聯(lián)盟九校新高考適應性考試數(shù)學試卷及答案解析_第4頁
吉林省輝煌聯(lián)盟九校新高考適應性考試數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省輝煌聯(lián)盟九校新高考適應性考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件2.若實數(shù)x,y滿足條件,目標函數(shù),則z的最大值為()A. B.1 C.2 D.03.中國古代數(shù)學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.44.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調遞增區(qū)間為()A. B. C. D.5.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.6.設函數(shù)若關于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.7.數(shù)列滿足,且,,則()A. B.9 C. D.78.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.9.設是定義域為的偶函數(shù),且在單調遞增,,則()A. B.C. D.10.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.11.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.312.設全集集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側,現(xiàn)要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.14.已知函數(shù),在區(qū)間上隨機取一個數(shù),則使得≥0的概率為.15.已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準線上一動點,滿足,,當面積最大時,直線的方程為______.16.若函數(shù)()的圖象與直線相切,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠生產某種電子產品,每件產品不合格的概率均為,現(xiàn)工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數(shù).18.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若關于的不等式的解集包含,求實數(shù)的取值范圍.19.(12分)如圖,設A是由個實數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.20.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面平面;(2)求二面角的余弦值.21.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.22.(10分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用數(shù)量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數(shù)量積的應用,考查推理能力與計算能力,屬于基礎題.2、C【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標函數(shù)如圖:當時函數(shù)取最大值為故答案選C【點睛】求線性目標函數(shù)的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最?。划敃r,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.3、D【解析】

根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.4、D【解析】

根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復合函數(shù)的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數(shù)的單調遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質,要熟記復合函數(shù)單調性判斷方法,屬于中檔題.5、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).6、B【解析】

畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.7、A【解析】

先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.8、C【解析】

直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質,是中檔題,解題時要注意等價轉化思想的合理運用,屬于中檔題.9、C【解析】

根據(jù)偶函數(shù)的性質,比較即可.【詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調遞增,所以故選:C【點睛】本題考查對數(shù)的運算及偶函數(shù)的性質,是基礎題.10、D【解析】

通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.11、B【解析】

由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應用,考查學生分析問題的能力,難度較易.12、A【解析】

先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分兩種情況討論:(1)斜邊在BC上,設,則,(2)若在若一條直角邊在上,設,則,進一步利用導數(shù)的應用和三角函數(shù)關系式恒等變形和函數(shù)單調性即可求出最大值.【詳解】(1)斜邊在上,設,則,則,,從而.當時,此時,符合.(2)若一條直角邊在上,設,則,則,,由知.,當時,,單調遞增,當時,,單調遞減,.當,即時,最大.故答案為:.【點睛】此題考查實際問題中導數(shù),三角函數(shù)和函數(shù)單調性的綜合應用,注意分類討論把所有情況考慮完全,屬于一般性題目.14、【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.15、【解析】

根據(jù)均值不等式得到,,根據(jù)等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當且僅當,等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應用,意在考查學生的計算能力和綜合應用能力.16、2【解析】

設切點由已知可得,即可解得所求.【詳解】設,因為,所以,即,又,.所以,即,.故答案為:.【點睛】本題考查導數(shù)的幾何意義,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數(shù)學期望,考查了分析問題、解決問題的能力,屬于中檔題.18、(1)(2)【解析】

(1)按進行分類,得到等價不等式組,分別解出解集,再取并集,得到答案;(2)將問題轉化為在時恒成立,按和分類討論,分別得到不等式恒成立時對應的的范圍,再取交集,得到答案.【詳解】解:(1)當時,等價于或或,解得或或,所以不等式的解集為:.(2)依題意即在時恒成立,當時,,即,所以對恒成立∴,得;當時,,即,所以對任意恒成立,∴,得∴,綜上,.【點睛】本題考查分類討論解絕對值不等式,分類討論研究不等式恒成立問題,屬于中檔題.19、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】

(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數(shù)中有9個1,9個-1.令.一方面,由于這18個數(shù)中有9個1,9個-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個實數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數(shù),由③知,上述2n個實數(shù)中,-1的個數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個數(shù)為2n-2k,所以,對數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點睛】本題為數(shù)列的創(chuàng)新應用題,考查數(shù)學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據(jù)引入的概念與性質進行推理求解,屬于較難題.20、(1)見解析;(2)【解析】

(1)取中點,中點,連接,,.設交于,則為的中點,連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)取中點,中點,連接,,.設交于,則為的中點,連接.設,則,,∴.由已知,,∴平面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論