版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省六安市舒城縣2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線2.若直線與圓交于兩點,關(guān)于直線對稱,則實數(shù)的值為()A. B. C. D.3.下列條件:①;②;③;其中一定能推出成立的有()A.0個 B.3個 C.2個 D.1個4.已知數(shù)列{an}的前n項和Sn=3n(λ-n)-6,若數(shù)列{an}單調(diào)遞減,則λ的取值范圍是A.(-∞,2) B.(-∞,3) C.(-∞,4) D.(-∞,5)5.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則6.已知扇形的圓心角,弧長為,則該扇形的面積為()A. B. C.6 D.127.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.如圖是一個正四棱錐,它的俯視圖是()A. B.C. D.9.點M(4,m)關(guān)于點N(n,-3)的對稱點為P(6,-9)則()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=510.數(shù)列,…的一個通項公式是()A.B.C.D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.12.在軸上有一點,點到點與點的距離相等,則點坐標為____________.13.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對稱軸為x=1,已知當x∈[0,1]時,f(x)=121-x,則有下列結(jié)論:①2是函數(shù)fx的周期;②函數(shù)fx在1,2上遞減,在2,3上遞增;③函數(shù)f14.已知數(shù)列的前n項和為,,且(),記(),若對恒成立,則的最小值為__.15.不論k為何實數(shù),直線通過一個定點,這個定點的坐標是______.16.設(shè)為數(shù)列的前項和,若,則數(shù)列的通項公式為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=2cosx(sinx﹣cosx).(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間:(2)將f(x)的圖象向左平移個單位后得到函數(shù)g(x)的圖象,若方程g(x)=m在區(qū)間[0,]上有解,求實數(shù)m的取值范圍.18.已知圓,為坐標原點,動點在圓外,過點作圓的切線,設(shè)切點為.(1)若點運動到處,求此時切線的方程;(2)求滿足的點的軌跡方程.19.已知圓經(jīng)過,,三點.(1)求圓的標準方程;(2)若過點N的直線被圓截得的弦AB的長為,求直線的傾斜角.20.已知函數(shù)().(1)若不等式的解集為,求的取值范圍;(2)當時,解不等式;(3)若不等式的解集為,若,求的取值范圍.21.如圖,在直三棱柱中,,,是棱的中點.(1)求證:;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:根據(jù)平面的基本性質(zhì)及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質(zhì)及推論知B正確.故選B.考點:平面的基本性質(zhì)及推論.2、A【解析】
由題意,得直線是線段的中垂線,則其必過圓的圓心,將圓心代入直線,即可得本題答案.【詳解】解:由題意,得直線是線段的中垂線,所以直線過圓的圓心,圓的圓心為,,解得.故選:A.【點睛】本題給出直線與圓相交,且兩個交點關(guān)于已知直線對稱,求參數(shù)的值.著重考查了直線與圓的位置關(guān)系等知識,屬于基礎(chǔ)題.3、D【解析】
利用特殊值證得①②不一定能推出,利用平方差公式證得③能推出.【詳解】對于①,若,而,故①不一定能推出;對于②,若,而,故②不一定能推出;對于③,由于,所以,故,也即.故③一定能推出.故選:D.【點睛】本小題主要考查不等式的性質(zhì),考查實數(shù)大小比較,屬于基礎(chǔ)題.4、A【解析】
,,因為單調(diào)遞減,所以,所以,且,所以只需,,且,所以,故選A.5、D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.6、A【解析】
可先由弧長計算出半徑,再計算面積.【詳解】設(shè)扇形半徑為,則,,.故選:A.【點睛】本題考查扇形面積公式,考查扇形弧長公式,掌握扇形的弧長和面積公式是解題基礎(chǔ).7、C【解析】
通過三視圖可以判斷這一個是半個圓柱與半個圓錐形成的組合體,利用圓柱和圓錐的體積公式可以求出這個組合體的體積.【詳解】該幾何體為半個圓柱與半個圓錐形成的組合體,故,故選C.【點睛】本題考查了利用三視圖求組合體圖形的體積,考查了運算能力和空間想象能力.8、D【解析】
根據(jù)正四棱錐的特征直接判定即可.【詳解】正四棱錐俯視圖可以看到四條側(cè)棱與頂點,且整體呈正方形.故選:D【點睛】本題主要考查了正四棱錐的俯視圖,屬于基礎(chǔ)題.9、D【解析】因為點M,P關(guān)于點N對稱,所以由中點坐標公式可知.10、D【解析】試題分析:由題意得,可采用驗證法,分別令,即可作出選擇,只有滿足題意,故選D.考點:歸納數(shù)列的通項公式.二、填空題:本大題共6小題,每小題5分,共30分。11、20【解析】
先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【詳解】設(shè)的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當時,取得最大值400故答案為:20【點睛】等差數(shù)列的是關(guān)于的二次函數(shù),但要注意只能取正整數(shù).12、【解析】
設(shè)點的坐標,根據(jù)空間兩點距離公式列方程求解.【詳解】由題:設(shè),點到點與點的距離相等,所以,,,解得:,所以點的坐標為.故答案為:【點睛】此題考查空間之間坐標系中兩點的距離公式,根據(jù)公式列方程求解點的坐標,關(guān)鍵在于準確辨析正確計算.13、①②④【解析】
依據(jù)題意作出函數(shù)f(x)的圖像,通過圖像可以判斷以下結(jié)論是否正確。【詳解】作出函數(shù)f(x)的圖像,由圖像可知2是函數(shù)fx的周期,函數(shù)fx在1,2上遞減,在2,3上遞增,函數(shù)當x∈3,4時,f(x)=f(x-4)=f(4-x)=故正確的結(jié)論有①②④?!军c睛】本題主要考查函數(shù)的圖像與性質(zhì)以及數(shù)形結(jié)合思想,意在考查學(xué)生的邏輯推理能力。14、【解析】
,即為首項為,公差為的等差數(shù)列,,,,由得,因為或時,有最大值,,即的最小值為,故答案為.【方法點晴】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,掌握一些常見的裂項技巧:①;②;③;④;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.15、(2,3)【解析】
將直線方程變形為,它表示過兩直線和的交點的直線系,解方程組,得上述直線恒過定點,故答案為.【方法點睛】本題主要考查待定直線過定點問題.屬于中檔題.探索曲線過定點的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(直線過定點,也可以根據(jù)直線的各種形式的標準方程找出定點).②從特殊情況入手,先探求定點,再證明與變量無關(guān).16、,【解析】
令時,求出,再令時,求出的值,再檢驗的值是否符合,由此得出數(shù)列的通項公式.【詳解】當時,,當時,,不合適上式,當時,,不合適上式,因此,,.故答案為,.【點睛】本題考查利用前項和求數(shù)列的通項,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)的最小正周期為π;函數(shù)的減區(qū)間為[kπ,kπ],k∈Z(2)m∈[﹣2,1]【解析】
(1)利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性和單調(diào)性,得出結(jié)論;(2)利用正弦函數(shù)的定義域和值域,求得的范圍,進而可得的范圍.【詳解】(1)函數(shù)f(x)=2cosx(sinx﹣cosx)sin2x﹣(1+cos2x)=2sin(2x)﹣1,故函數(shù)的最小正周期為π.令2kπ2x2kπ,求得kπx≤kπ,可得函數(shù)的減區(qū)間為[kπ,kπ],k∈Z.(2)將f(x)的圖象向左平移個單位后,得到函數(shù)g(x)=2sin(2x)﹣1=2sin(2x)﹣1的圖象.在區(qū)間[0,]上,2x∈[,],sin(2x)∈[,1],f(x)∈[﹣2,1].若方程g(x)=m在區(qū)間[0,]上有解,則m∈[﹣2,1].【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,函數(shù)的恒成立問題,正弦函數(shù)的定義域和值域,屬于中檔題.18、(1)或;(2).【解析】
解:把圓C的方程化為標準方程為(x+1)2+(y-2)2=4,∴圓心為C(-1,2),半徑r=2.(1)當l的斜率不存在時,此時l的方程為x=1,C到l的距離d=2=r,滿足條件.當l的斜率存在時,設(shè)斜率為k,得l的方程為y-3=k(x-1),即kx-y+3-k=0,則=2,解得k=.∴l(xiāng)的方程為y-3=(x-1),即3x+4y-15=0.綜上,滿足條件的切線l的方程為或.(2)設(shè)P(x,y),則|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|.∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴點P的軌跡方程為.考點:直線與圓的位置關(guān)系;圓的切線方程;點的軌跡方程.19、(1)(2)30°或90°.【解析】
(1)解法一:將圓的方程設(shè)為一般式,將題干三個點代入圓的方程,解出相應(yīng)的參數(shù)值,即可得出圓的一般方程,再化為標準方程;解法二:求出線段和的中垂線方程,將兩中垂線方程聯(lián)立求出交點坐標,即為圓心坐標,然后計算為圓的半徑,即可寫出圓的標準方程;(2)先利用勾股定理計算出圓心到直線的距離為,并對直線的斜率是否存在進行分類討論:一是直線的斜率不存在,得出直線的方程為,驗算圓心到該直線的距離為;二是當直線的斜率存在時,設(shè)直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關(guān)于的方程,求出的值.結(jié)合前面兩種情況求出直線的傾斜角.【詳解】(1)解法一:設(shè)圓的方程為,則∴即圓為,∴圓的標準方程為;解法二:則中垂線為,中垂線為,∴圓心滿足∴,半徑,∴圓的標準方程為.(2)①當斜率不存在時,即直線到圓心的距離為1,也滿足題意,此時直線的傾斜角為90°,②當斜率存在時,設(shè)直線的方程為,由弦長為4,可得圓心到直線的距離為,,∴,此時直線的傾斜角為30°,綜上所述,直線的傾斜角為30°或90°.【點睛】本題考查圓的方程以及直線截圓所得弦長的計算,在求直線與圓所得弦長的計算中,問題的核心要轉(zhuǎn)化為弦心距的計算,弦心距的計算主要有以下兩種方式:一是利用勾股定理計算,二是利用點到直線的距離公式計算圓心到直線的距離.20、(1);(2).;(3).【解析】試題分析:(1)對二項式系數(shù)進行討論,可得求出解集即可;(2)分為,,分別解出3種情形對應(yīng)的不等式即可;(3)將問題轉(zhuǎn)化為對任意的,不等式恒成立,利用分離參數(shù)的思想得恒成立,求出其最大值即可.試題解析:(1)①當即時,,不合題意;②當即時,,即,∴,∴(2)即即①當即時,解集為②當即時,∵,∴解集為③當即時,∵,所以,所以∴解集為(3)不等式的解集為,,即對任意的,不等式恒成立,即恒成立,因為恒成立,所以恒成立,設(shè)則,,所以,因為,當且僅當時取等號,所以,當且僅當時取等號,所以當時,,所以點睛:本題主要考查了含有參數(shù)的一元二次不等式的解法,考查了分類討論的思想以及轉(zhuǎn)化與化歸的能力,難度一般;對于含有參數(shù)的一元二次不等式常見的討論形式有如下幾種情形:1、對二次項系數(shù)進行討論;2、對應(yīng)方程的根進行討論;3、對應(yīng)根的大小進行討論等;考查恒成立問題,正確分離參數(shù)是關(guān)鍵,也是常用的一種手段.通過分離參數(shù)可轉(zhuǎn)化為或恒成立,即或即可,利用導(dǎo)數(shù)知識結(jié)合單調(diào)性求出或即得解.21、(1)見詳解;(2)見詳解.【解析】
(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,可求O為AC1的中點,D是棱AB的中點,利用中位線的性質(zhì)可證OD∥BC1,根據(jù)線面平行的判斷定理即可證明BC1∥平面A1CD.(2)由(1)可證平行四邊形ACC1A1是菱形,由其性質(zhì)可得AC1⊥A1C,利用線面垂直的性質(zhì)可證AB⊥AA1,根據(jù)AB⊥AC,利用線面垂直的判定定理可證AB⊥平面ACC1A1,利用線面垂直的性質(zhì)可證AB⊥A1C,又AC1⊥A1C,根據(jù)線面垂直的判定定理可證A1C⊥平面ABC1,利用線面垂直的性質(zhì)即可證明BC1⊥A1C.【詳解】(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,在直三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1是平行四邊形,所以:O為AC1的中點,又因為:D是棱AB的中點,所以:OD∥BC1,又因為:BC1?平面A1CD,OD?平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:側(cè)面ACC1A1是平行四邊形,因為:AC=AA1,所以:平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030西南D+果糖醇CAS市場供需現(xiàn)狀趨勢分析投資前景評估可行規(guī)劃方案
- 安全員A證考試考前沖刺測試卷附答案詳解(綜合卷)
- 常州2025年常州市事業(yè)單位招聘筆試歷年參考題庫附帶答案詳解
- 宜賓四川宜賓市綜合應(yīng)急救援隊編外人員招聘5人筆試歷年參考題庫附帶答案詳解
- 安徽安徽師范大學(xué)2025年專職輔導(dǎo)員招聘4人(第二批)筆試歷年參考題庫附帶答案詳解
- 寧波浙江寧波市衛(wèi)生健康委直屬事業(yè)單位長沙專場招聘283人筆試歷年參考題庫附帶答案詳解
- 寧波2025年浙江寧波慈溪市金山初級中學(xué)招聘派遣制教師筆試歷年參考題庫附帶答案詳解
- 天津2025年天津市規(guī)劃和自然資源局所屬事業(yè)單位招聘29人筆試歷年參考題庫附帶答案詳解
- 天津2025年天津中德應(yīng)用技術(shù)大學(xué)博士學(xué)位或高級專業(yè)技術(shù)職務(wù)崗位招聘43人筆試歷年參考題庫附帶答案詳解
- 大理2025年云大理南賓川縣婦幼保健院招聘編外人員10人(12月招聘)筆試歷年參考題庫附帶答案詳解
- 高校區(qū)域技術(shù)轉(zhuǎn)移轉(zhuǎn)化中心(福建)光電顯示、海洋氫能分中心主任招聘2人備考題庫及答案詳解(考點梳理)
- 航空安保審計培訓(xùn)課件
- 2026四川成都錦江投資發(fā)展集團有限責任公司招聘18人備考題庫有答案詳解
- 高層建筑滅火器配置專項施工方案
- 2023-2024學(xué)年廣東深圳紅嶺中學(xué)高二(上)學(xué)段一數(shù)學(xué)試題含答案
- 2025年全國職業(yè)院校技能大賽中職組(母嬰照護賽項)考試題庫(含答案)
- 2026江蘇鹽城市阜寧縣科技成果轉(zhuǎn)化服務(wù)中心選調(diào)10人考試參考題庫及答案解析
- 托管機構(gòu)客戶投訴處理流程規(guī)范
- 2026年及未來5年中國建筑用腳手架行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- 銀行客戶信息安全課件
- (2025)70周歲以上老年人換長久駕照三力測試題庫(附答案)
評論
0/150
提交評論