版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省鄒城市實驗中學高一下數(shù)學期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù),又,,且的最小值為,則正數(shù)的值是()A. B. C. D.2.下列說法正確的是()A.若,則 B.若,,則C.若,則 D.若,,則3.在中,已知a,b,c分別為,,所對的邊,且a,b,c成等差數(shù)列,,,則()A. B. C. D.4.已知m個數(shù)的平均數(shù)為a,n個數(shù)的平均數(shù)為b,則這個數(shù)的平均數(shù)為()A. B. C. D.5.方程的解所在的區(qū)間為()A. B.C. D.6.已知,則的值域為()A. B. C. D.7.某學校為了解1000名新生的身體素質(zhì),將這些學生編號為1,2,…,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取100名學生進行體質(zhì)測驗,若46號學生被抽到,則下面4名學生中被抽到的是A.8號學生 B.200號學生 C.616號學生 D.815號學生8.在中,為線段上的一點,,且,則A., B.,C., D.,9.現(xiàn)有1瓶礦泉水,編號從1至1.若從中抽取6瓶檢驗,用系統(tǒng)抽樣方法確定所抽的編號為()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,3010.下列命題正確的是()A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.C.有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱.D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知,則下列四個不等式中,正確的不等式的序號為____________①②③④12.已知且,則________13.已知點,,若直線與線段有公共點,則實數(shù)的取值范圍是____________.14.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.15.方程的解為______.16.已知數(shù)列的前項和,那么數(shù)列的通項公式為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù)的定義域為R,當時,,且對任意實數(shù)m、n,有成立,數(shù)列滿足,且.(1)求的值;(2)若不等式對一切都成立,求實數(shù)k的最大值.18.設為等差數(shù)列的前項和,已知,.(1)求數(shù)列的通項公式;(2)令,且數(shù)列的前項和為,求證:.19.在中,角對應的邊分別是,且.(1)求角;(2)若,求的取值范圍.20.已知向量.(1)求的值;(2)若,且,求.21.如圖所示,已知三棱錐的側(cè)棱長都為1,底面ABC是邊長為的正三角形.(1)求三棱錐的表面積;(2)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】,由,得,,由,得,則,當時,取得最小值,則,解得,故選D.2、D【解析】
利用不等式的性質(zhì)或舉反例的方法來判斷各選項中不等式的正誤.【詳解】對于A選項,若且,則,該選項錯誤;對于B選項,取,,,,則,均滿足,但,B選項錯誤;對于C選項,取,,則滿足,但,C選項錯誤;對于D選項,由不等式的性質(zhì)可知該選項正確,故選:D.【點睛】本題考查不等式正誤的判斷,常用不等式的性質(zhì)以及舉反例的方法來進行驗證,考查推理能力,屬于基礎題.3、B【解析】
利用成等差數(shù)列可得,再利用余弦定理構(gòu)造的結(jié)構(gòu)再代入求得即可.【詳解】由成等差數(shù)列可得,由余弦定理有,即,解得,即.故選:B【點睛】本題主要考查了等差中項與余弦定理的運算,需要根據(jù)題意構(gòu)造與的結(jié)構(gòu)代入求解.屬于中檔題.4、D【解析】
根據(jù)平均數(shù)的定義求解.【詳解】兩組數(shù)的總數(shù)為:則這個數(shù)的平均數(shù)為:故選:D【點睛】本題主要考查了平均數(shù)的定義,還考查了運算求解能力,屬于基礎題.5、B【解析】試題分析:由題意得,設函數(shù),則,所以,所以方程的解所在的區(qū)間為,故選B.考點:函數(shù)的零點.6、C【解析】
由已知條件,先求出函數(shù)的周期,由于,即可求出值域.【詳解】因為,所以,又因為,所以當時,;當時,;當時,,所以的值域為.故選:C.【點睛】本題考查三角函數(shù)的值域,利用了正弦函數(shù)的周期性.7、C【解析】
等差數(shù)列的性質(zhì).滲透了數(shù)據(jù)分析素養(yǎng).使用統(tǒng)計思想,逐個選項判斷得出答案.【詳解】詳解:由已知將1000名學生分成100個組,每組10名學生,用系統(tǒng)抽樣,46號學生被抽到,所以第一組抽到6號,且每組抽到的學生號構(gòu)成等差數(shù)列,公差,所以,若,則,不合題意;若,則,不合題意;若,則,符合題意;若,則,不合題意.故選C.【點睛】本題主要考查系統(tǒng)抽樣.8、A【解析】
根據(jù)相等向量的定義及向量的運算法則:三角形法則求出,利用平面向量基本定理求出x,y的值【詳解】由題意,∵,∴,即,∴,即故選A.【點睛】本題以三角形為載體,考查向量的加法、減法的運算法則;利用運算法則將未知的向量用已知向量表示,是解題的關鍵.9、A【解析】
根據(jù)系統(tǒng)抽樣原則,可知編號成公差為的等差數(shù)列,觀察選項得到結(jié)果.【詳解】根據(jù)系統(tǒng)抽樣原則,可知所抽取編號應成公差為的等差數(shù)列選項編號公差為;選項編號不成等差;選項編號公差為;可知錯誤選項編號滿足公差為的等差數(shù)列,正確本題正確選項:【點睛】本題考查抽樣方法中的系統(tǒng)抽樣,關鍵是明確系統(tǒng)抽樣的原則和特點,屬于基礎題.10、C【解析】試題分析:有兩個面平行,其余各面都是四邊形的幾何體,A錯;有兩個面平行,其余各面都是平行四邊形的幾何體如圖所示,B錯;用一個平行于底面的平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺,D錯;由棱柱的定義,C正確;考點:1、棱柱的概念;2、棱臺的概念.二、填空題:本大題共6小題,每小題5分,共30分。11、②③【解析】
根據(jù),分當和兩種情況分類討論,每一類中利用正、余弦函數(shù)的單調(diào)性判斷,特別注意,當時,.【詳解】當時,在上是增函數(shù),因為,所以,因為在上是減函數(shù),且,所以,當時,且,因為在上是減函數(shù),所以,而,所以.故答案為:②③【點睛】本題主要考查了正弦函數(shù)與余弦函數(shù)的單調(diào)性在三角形中的應用,還考查了運算求解的能力,屬于中檔題.12、【解析】
根據(jù)數(shù)列極限的方法求解即可.【詳解】由題,故.又.故.故.故答案為:【點睛】本題主要考查了數(shù)列極限的問題,屬于基礎題型.13、【解析】
根據(jù)直線方程可確定直線過定點;求出有公共點的臨界狀態(tài)時的斜率,即和;根據(jù)位置關系可確定的范圍.【詳解】直線可整理為:直線經(jīng)過定點,又直線的斜率為的取值范圍為:本題正確結(jié)果:【點睛】本題考查根據(jù)直線與線段的交點個數(shù)求解參數(shù)范圍的問題,關鍵是能夠明確直線經(jīng)過的定點,從而確定臨界狀態(tài)時的斜率.14、【解析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【詳解】作于,因為為正三棱錐,所以,為中點,連結(jié),則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【點睛】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.15、或【解析】
由指數(shù)函數(shù)的性質(zhì)得,由此能求出結(jié)果.【詳解】方程,,或,解得或.故答案為或.【點睛】本題考查指數(shù)方程的解的求法,是基礎題,解題時要認真審題,注意指數(shù)函數(shù)的性質(zhì)的合理運用.16、【解析】
運用數(shù)列的遞推式即可得到數(shù)列通項公式.【詳解】數(shù)列的前項和,當時,得;當時,;綜上可得故答案為:【點睛】本題考查數(shù)列的通項與前項和的關系,考查分類討論思想的運用,求解時要注意把通項公式寫成分段的形式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)首先令,得:,根據(jù)得到,即是以,的等差數(shù)列,再計算即可.(2)將題意轉(zhuǎn)化為,設,判斷其單調(diào)性,求出最小值即可得到答案.【詳解】令,得:,.所以.因為,所以.所以,.所以是以,的等差數(shù)列.所以,.(2)因為恒成立.即恒成立.設,知,且,,即,故為關于的增函數(shù),.所以,的最大值為.【點睛】本題主要考查數(shù)列與函數(shù)的綜合,利用函數(shù)的單調(diào)性是解題的關鍵,屬于難題.18、(1),(2)見解析【解析】
(1)根據(jù)等差數(shù)列的通項公式得到結(jié)果;(2)根據(jù)第一問得到,由裂項求和得到結(jié)果.【詳解】(1)設等差數(shù)列的公差為,由題意得,,解得,,則,.(2)由得∴.【點睛】這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。19、(1);(2).【解析】
(1)依照條件形式,使用正弦定理化角為邊,再用余弦定理求出,從而得出角的值;(2)先利用余弦定理找出的關系,再利用基本不等式放縮,求出的取值范圍.【詳解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,當且僅當時,等號成立,又,所以.【點睛】本題主要考查利用正余弦定理解三角形,以及利用基本不等式求等式條件下的取值范圍問題,第二問也可以采用正弦定理化邊為角,利用“同一法”求出的取值范圍.20、(1);(2).【解析】
(1)對等式進行平方運算,根據(jù)平面向量的模和數(shù)量積的坐標表示公式,結(jié)合兩角差的余弦公式直接求解即可;(2)由(1)可以結(jié)合同角的三角函數(shù)關系式求出的值,再由同角三角函數(shù)關系式結(jié)合的值求出的值,最后利用兩角和的正弦公式求出的值即可.【詳解】(1);(2)因為,所以,而,所以,因為,,所以.因此有.【點睛】本題考查了已知平面向量的模求參數(shù)問題,考查了平面向量數(shù)量積的坐標表示公式,考查了兩角差的余弦公式,考查了兩角和的正弦公式,考查了同角的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工具零件采購合同范本
- 規(guī)范教育執(zhí)法管理制度
- 水價制度設計規(guī)范標準
- 規(guī)范公司日常管理制度
- 規(guī)范醫(yī)院體檢管理制度
- 工地巡邏保安制度規(guī)范
- 民宿廚房制度規(guī)范要求
- 電廠進出門崗制度規(guī)范
- 電競公司行為規(guī)范制度
- 游戲決賽制度規(guī)范要求
- 棄渣場使用規(guī)劃方案
- 滑坡穩(wěn)定性評價
- TTSSP 045-2023 油茶果機械化爆蒲及油茶籽干制加工技術規(guī)程
- JCT 871-2023 鍍銀玻璃鏡 (正式版)
- 2024年廣東深圳市龍崗區(qū)南灣街道綜合網(wǎng)格員招聘筆試沖刺題(帶答案解析)
- 《兒科護理學》課件-兒童健康評估特點
- 廣東省深圳市南山區(qū)2023-2024學年六年級上學期期末科學試卷
- 臨床研究數(shù)據(jù)清洗與質(zhì)量控制
- 基礎拓撲學講義答案尤承業(yè)
- 1種植業(yè)及養(yǎng)殖業(yè)賬務處理及科目設置
- 淺析幼小銜接中大班幼兒時間觀念的培養(yǎng)對策 論文
評論
0/150
提交評論