2025屆廣西壯族自治區(qū)防城港四校聯(lián)考數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第1頁
2025屆廣西壯族自治區(qū)防城港四校聯(lián)考數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第2頁
2025屆廣西壯族自治區(qū)防城港四校聯(lián)考數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第3頁
2025屆廣西壯族自治區(qū)防城港四校聯(lián)考數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第4頁
2025屆廣西壯族自治區(qū)防城港四校聯(lián)考數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣西壯族自治區(qū)防城港四校聯(lián)考數(shù)學(xué)九上期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖是由4個大小相同的小正方體擺成的幾何體,它的左視圖是()A. B. C. D.2.△ABC在正方形網(wǎng)格中的位置如圖所示,則cosB的值為()A. B. C. D.23.如圖,點A、點B是函數(shù)y=的圖象上關(guān)于坐標原點對稱的任意兩點,BC∥x軸,AC∥y軸,△ABC的面積是4,則k的值是()A.-2 B.±4 C.2 D.±24.如圖,在平面直角坐標系中,直線l的表達式是,它與兩坐標軸分別交于C、D兩點,且∠OCD=60o,設(shè)點A的坐標為(m,0),若以A為圓心,2為半徑的⊙A與直線l相交于M、N兩點,當MN=時,m的值為()A. B. C.或 D.或5.如圖,在以O(shè)為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.126.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)7.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:18.如圖,在菱形中,,,為中點,是上一點,為上一點,且,,交于點,關(guān)于下列結(jié)論,正確序號的選項是()①,②,③④A.①② B.①②③ C.①②④ D.①③④9.按如圖所示的方法折紙,下面結(jié)論正確的個數(shù)()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個10.下列說法正確的是()A.“任意畫一個三角形,其內(nèi)角和為”是隨機事件B.某種彩票的中獎率是,說明每買100張彩票,一定有1張中獎C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)一定是50次11.點P(x﹣1,x+1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.把拋物線向下平移2個單位,再向右平移1個單位,所得到的拋物線是A. B. C. D.二、填空題(每題4分,共24分)13.若關(guān)于的一元二次方程有實數(shù)根,則的取值范圍是_____.14.如圖,正五邊形ABCDE內(nèi)接于⊙O,若⊙O的半徑為10,則的長為____.15.若二次函數(shù)y=mx2+2x+1的圖象與x軸有公共點,則m的取值范圍是_____.16.△ABC與△A′B′C′是位似圖形,且△ABC與△A′B′C′的位似比是1:2,已知△ABC的面積是3,則△A′B′C′的面積是_____.17.一個正多邊形的每個外角都等于,那么這個正多邊形的中心角為______.18.一個口袋中裝有2個完全相同的小球,它們分別標有數(shù)字1,2,從口袋中隨機摸出一個小球記下數(shù)字后放回,搖勻后再隨機摸出一個小球,則兩次摸出小球的數(shù)字和為偶數(shù)的概率是.三、解答題(共78分)19.(8分)如圖,直線y=﹣x+2與反比例函數(shù)y=的圖象在第二象限內(nèi)交于點A,過點A作AB⊥x軸于點B,OB=1.(1)求該反比例函數(shù)的表達式;(2)若點P是該反比例函數(shù)圖象上一點,且△PAB的面積為3,求點P的坐標.20.(8分)如圖,⊙O是△ABC的外接圓,PA是⊙O切線,PC交⊙O于點D.(1)求證:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半徑.21.(8分)在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.22.(10分)如圖,在平面直角坐標系中,矩形的頂點在軸上,在軸上,把矩形沿對角線所在的直線對折,點恰好落在反比例函數(shù)的圖象上點處,與軸交于點,延長交軸于點,點剛好是的中點.已知的坐標為.(1)求反比例函數(shù)的函數(shù)表達式;(2)若是反比例函數(shù)圖象上的一點,點在軸上,若以為頂點的四邊形是平行四邊形,請直接寫出點的坐標_________.23.(10分)如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,且有∠EBD=∠CAB.⑴求證:BE是⊙O的切線;⑵若BC=,AC=5,求圓的直徑AD的長.24.(10分)已知:如圖,在中,是邊上的高,且,,,求的長.25.(12分)已知,是一元二次方程的兩個實數(shù)根,且,拋物線的圖象經(jīng)過點,,如圖所示.(1)求這個拋物線的解析式;(2)設(shè)(1)中的拋物線與軸的另一個交點為,拋物線的頂點為,試求出點,的坐標,并判斷的形狀;(3)點是直線上的一個動點(點不與點和點重合),過點作軸的垂線,交拋物線于點,點在直線上,距離點為個單位長度,設(shè)點的橫坐標為,的面積為,求出與之間的函數(shù)關(guān)系式.26.將△ABC繞點B逆時針旋轉(zhuǎn)到△A′BC′,使A、B、C′在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,求圖中陰影部分的面積.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)左視圖即從物體的左面觀察得得到的視圖,進而得出答案.【詳解】如圖所示,該幾何體的左視圖是:.故選C.【點睛】此題主要考查了幾何體的三視圖;掌握左視圖是從幾何體左面看得到的平面圖形是解決本題的關(guān)鍵.2、A【解析】解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.3、C【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴k>0,∵BC∥x軸,AC∥y軸,∴S△AOD=S△BOE=k,∵反比例函數(shù)及正比例函數(shù)的圖象關(guān)于原點對稱,∴A、B兩點關(guān)于原點對稱,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故選C.【點睛】本題考查反比例函數(shù)的性質(zhì).4、C【分析】根據(jù)題意先求得、的長,分兩種情況討論:①當點在直線l的左側(cè)時,利用勾股定理求得,利用銳角三角函數(shù)求得,即可求得答案;②當點在直線l的右側(cè)時,同理可求得答案.【詳解】令,則,點D的坐標為,∵∠OCD=60o,∴,分兩種情況討論:①當點在直線l的左側(cè)時:如圖,過A作AG⊥CD于G,∵,MN=,∴,∴,在中,∠ACG=60o,∴,∴,∴,②當點在直線l的右側(cè)時:如圖,過A作AG⊥直線l于G,∵,MN=,∴,∴,在中,∠ACG=60o,∴,∴,∴,綜上:m的值為:或.故選:C.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,勾股定理,銳角三角函數(shù),分類討論、構(gòu)建合適的輔助線是解題的關(guān)鍵.5、C【分析】設(shè)B點的坐標為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關(guān)鍵點坐標,根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設(shè)B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結(jié)合圖形,分析圖形面積關(guān)系是關(guān)鍵.6、C【解析】直接利用位似圖形的性質(zhì)得出對應(yīng)點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.7、B【分析】可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.8、B【分析】依據(jù),,即可得到;依據(jù),即可得出;過作于,依據(jù),根據(jù)相似三角形的性質(zhì)得到;依據(jù),,可得,進而得到.【詳解】解:∵菱形中,,.∴,,∴,故①正確;∴,又∵,為中點,,∴,即,又∵,∴∵,∴,∴,∴,故②正確;如圖,過作于,則,∴,,,∴中,,又∵,∴,故③正確;∵,,,,∴,,∴,∴,故④錯誤;故選:B.【點睛】此題考查相似三角形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的性質(zhì)的綜合運用.解題關(guān)鍵在于掌握判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.9、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.10、C【分析】根據(jù)必然事件,隨機事件,可能事件的概念解題即可.【詳解】解:A.“任意畫一個三角形,其內(nèi)角和為”是不可能事件,錯誤,B.某種彩票的中獎率是,說明每買100張彩票,一定有1張中獎,可能事件不等于必然事件,錯誤,C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確,D.投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)可能是50次,錯誤,故選C.【點睛】本題考查了必然事件,隨機事件,可能事件的概念,屬于簡單題,熟悉概念是解題關(guān)鍵.11、D【解析】本題可以轉(zhuǎn)化為不等式組的問題,看下列不等式組哪個無解,(1)x-1>0,x+1>0,解得x>1,故x-1>0,x+1>0,點在第一象限;(2)x-1<0,x+1<0,解得x<-1,故x-1<0,x+1<0,點在第三象限;(3)x-1>0,x+1<0,無解;(4)x-1<0,x+1>0,解得-1<x<1,故x-1<0,x+1>0,點在第二象限.故點P不能在第四象限,故選D.12、D【解析】根據(jù)平移概念,圖形平移變換,圖形上每一點移動規(guī)律都是一樣的,也可用拋物線頂點移動,根據(jù)點的坐標是平面直角坐標系中的平移規(guī)律:“左加右減,上加下減.”,頂點(-1,0)→(0,-2).因此,所得到的拋物線是.故選D.二、填空題(每題4分,共24分)13、且k≠1.【分析】根據(jù)一元二次方程的定義和判別式的意義得到且,然后求出兩個不等式的公共部分即可.【詳解】解:根據(jù)題意得且,

解得:且k≠1.

故答案是:且k≠1.【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2-4ac:當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根.14、2π【分析】利用正五邊形的性質(zhì)得出中心角度數(shù),進而利用弧長公式求出即可.【詳解】解:如圖所示:連接OA、OB.∵⊙O為正五邊形ABCDE的外接圓,⊙O的半徑為10,∴∠AOB==72°,∴的長為:.故答案為:2π.【點睛】本題主要考查正多邊形與圓、弧長公式等知識,得出圓心角度數(shù)是解題關(guān)鍵.15、m≤1且m≠1.【分析】由拋物線與x軸有公共點可知△≥1,再由二次項系數(shù)不等于1,建立不等式即可求出m的取值范圍.【詳解】解:y=mx2+2x+1是二次函數(shù),∴m≠1,由題意可知:△≥1,∴4﹣4m≥1,∴m≤1∴m≤1且m≠1故答案為m≤1且m≠1.【點睛】本題考查二次函數(shù)圖像與x軸的交點問題,熟練掌握交點個數(shù)與△的關(guān)系是解題的關(guān)鍵.16、1【分析】根據(jù)位似是相似的特殊形式,位似比等于相似比,其對應(yīng)的面積比等于相似比的平方進行解答即可.【詳解】解:∵△ABC與△A′B′C′是位似圖形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC與△A′B′C′的面積比是1:4,又△ABC的面積是3,∴△A′B′C′的面積是1,故答案為1.【點睛】本題考查的是位似變換的概念和性質(zhì),掌握位似是相似的特殊形式,位似比等于相似比,其對應(yīng)的面積比等于相似比的平方是解題的關(guān)鍵.17、60°【分析】根據(jù)題意首先由多邊形外角和定理求出正多邊形的邊數(shù)n,再由正多邊形的中心角=,即可得出結(jié)果.【詳解】解:正多邊形的邊數(shù)為,故這個正多邊形的中心角為.故答案為:60°.【點睛】本題考查正多邊形的性質(zhì)和多邊形外角和定理以及正多邊形的中心角的計算方法,熟練掌握正多邊形的性質(zhì),并根據(jù)題意求出正多邊形的邊數(shù)是解決問題的關(guān)鍵.18、.【解析】試題分析:如圖所示,∵共有4種結(jié)果,兩次摸出小球的數(shù)字和為偶數(shù)的有2次,∴兩次摸出小球的數(shù)字和為偶數(shù)的概率==.故答案為.考點:列表法與樹狀圖法.三、解答題(共78分)19、(1);(2)(﹣3,1)或(1,﹣3).【分析】(1)先利用一次解析式確定A點坐標為(﹣1,3),然后把A點坐標代入y=中求出k得到反比例函數(shù)解析式;(2)設(shè)P(t,﹣),利用三角形面積公式得到×3×|﹣+1|=3,然后解方程求出t,從而得到P點坐標.【詳解】(1)∵AB⊥x軸于點B,OB=1.∴A點的橫坐標為﹣1,當x=﹣1時,y=﹣x+2=3,則A(﹣1,3),把A(﹣1,3)代入y=得k=﹣1×3=﹣3,∴反比例函數(shù)解析式為;(2)設(shè)P(t,﹣),∵△PAB的面積為3,∴×3×|﹣+1|=3,解得t=﹣3或t=1,∴P點坐標為(﹣3,1)或(1,﹣3).【點睛】此題考查待定系數(shù)法求函數(shù)解析式,一次函數(shù)與反比例函數(shù)的圖象結(jié)合求幾何圖形的面積.20、(1)見解析;(2)⊙O的半徑為1【分析】(1)連接AO延長AO交⊙O于點E,連接EC.想辦法證明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解決問題;

(2)連接BD,作OM⊥BC于M交⊙O于F,連接OC,CF.設(shè)⊙O的半徑為x.求出OM,根據(jù)CM2=OC2-OM2=CF2-FM2構(gòu)建方程即可解決問題;【詳解】(1)連接AO并延長交⊙O于點E,連接EC.∵AE是直徑,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切線,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)連接BD,作OM⊥BC于M交⊙O于F,連接OC,CF.設(shè)⊙O的半徑為x.∵∠BCD=90°,∴BD是⊙O的直徑,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF,∴∠ACB=∠CDF,∴,∴AB=CF=2,∵CM2=OC2﹣OM2=CF2﹣FM2,∴x2﹣12=(2)2﹣(x﹣1)2,∴x=1或﹣2(舍),∴⊙O的半徑為1.【點睛】本題考查切線的性質(zhì),垂徑定理,圓周角定理推論,勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題.21、(1)袋中有黃球有2個(2)【解析】設(shè)袋中黃球有x個,根據(jù)任意摸出一個球是紅球的概率為列出關(guān)于x的方程,解之可得;

列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】設(shè)袋中黃球有x個,根據(jù)題意,得:,解得,經(jīng)檢驗是原分式方程的解,,即袋中有黃球有2個;列表如下:紅紅紅紅黃黃紅紅,紅紅,紅紅,紅紅,紅紅,黃紅,黃紅紅,紅紅,紅紅,紅紅,紅紅,黃紅,黃紅紅,紅紅,紅紅,紅紅,紅紅,黃紅,黃紅紅,紅紅,紅紅,紅紅,紅紅,黃紅,黃黃黃,紅黃,紅黃,紅黃,紅黃,黃黃,黃黃黃,紅黃,紅黃,紅黃,紅黃,黃黃,黃由表知共有36種等可能結(jié)果,其中兩次摸出不同顏色球的有16種結(jié)果,所以兩次摸出不同顏色球的概率為.【點睛】本題考查了列表法與樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回試驗還是不放回試驗用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.22、(1);(2),,(,0).【分析】(1)證得BD是CF的垂直平分線,求得,作DG⊥BF于G,求得點D的坐標為,從而求得反比例函數(shù)的解析式;(2)分3種情形,分別畫出圖形即可解決問題.【詳解】(1)∵四邊形ABOC是矩形,∴AB=OC,AC=OB,,根據(jù)對折的性質(zhì)知,,∴,,AB=DB,又∵D是CF的中點,∴BD是CF的垂直平分線,∴BC=BF,,∴,∵,∴,∵點B的坐標為,∴,在中,,,,∴,過D作DG⊥BF于G,如圖,在中,,,,∴,,∴,∴點D的坐標為,代入反比例函數(shù)的解析式得:,∴反比例函數(shù)的解析式;(2)如圖①、②中,作EQ∥x軸交反比例函數(shù)的圖象于點Q,在中,,,∴,∴點E的坐標為,點Q縱坐標與點E縱坐標都是,代入反比例函數(shù)的解析式得:,解得:,∴點Q的坐標為,∴,∵四點構(gòu)成平行四邊形,∴∴點的坐標分別為,;如圖③中,構(gòu)成平行四邊形,作QM∥y軸交軸于點M,∵四邊形為平行四邊形,∴,,∴,∴,,∴點的坐標為,∴∴,∴點的坐標為,綜上,符合條件點的坐標有:,,;【點睛】本題考查反比例函數(shù)綜合題、矩形的性質(zhì)、翻折變換、直角三角形中30度角的性質(zhì)、平行四邊形的判定和性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會用分類討論的思想思考問題.23、(1)詳見解析;(2)1【分析】(1)先根據(jù)等弦所對的劣弧相等,再結(jié)合∠EBD=∠CAB從而得到∠BAD=∠EBD,最后用直徑所對的圓周角為直角即可;

(2)利用三角形的中位線先求出OM,再用勾股定理求出半徑r,最后得到直徑的長.【詳解】解:⑴證明:連接OB,CD,OB、CD交于點M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直徑,∴∠ABD=∠ACD=90°,又∠EBD=∠CAB,∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半徑,∴BE是⊙O的切線.⑵∵OB∥AC,OA=OD,AC=5,.∴OM=2.5,BM=OB-2.5,OB⊥CD設(shè)⊙O的半徑為r,則在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2,BD=BC=.∴r1=3,r2=-0.5(舍).∴圓的直徑AD的長是1.【點睛】此題是切線的判定,主要考查了圓周角的性質(zhì),切線的判定,勾股定理等,解本題的關(guān)鍵是作出輔助線.24、【分析】根據(jù)直角三角形中,30°所對的直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論