版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知一條拋物線的表達(dá)式為,則將該拋物線先向右平移個單位長度,再向上平移個單位長度,得到的新拋物線的表達(dá)式為()A. B. C. D.2.在相同的時刻,太陽光下物高與影長成正比.如果高為1.5米的人的影長為2.5米,那么影長為30米的旗桿的高是().A.18米
B.16米
C.20米
D.15米3.若拋物線與坐標(biāo)軸有一個交點,則的取值范圍是()A. B. C. D.4.如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為()A.π﹣6 B.π C.π﹣3 D.+π5.下列說法正確的是()A.對角線相等的平行四邊形是菱形B.方程x2+4x+9=0有兩個不相等的實數(shù)根C.等邊三角形都是相似三角形D.函數(shù)y=,當(dāng)x>0時,y隨x的增大而增大6.如圖,四邊形的頂點坐標(biāo)分別為.如果四邊形與四邊形位似,位似中心是原點,它的面積等于四邊形面積的倍,那么點的坐標(biāo)可以是()A. B.C. D.7.下列是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.8.兩地相距,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離地的距離與時間的關(guān)系,結(jié)合圖象,下列結(jié)論錯誤的是()A.是表示甲離地的距離與時間關(guān)系的圖象B.乙的速度是C.兩人相遇時間在D.當(dāng)甲到達(dá)終點時乙距離終點還有9.下列拋物線中,與拋物線y=-3x2+1的形狀、開口方向完全相同,且頂點坐標(biāo)為(-1,2)的是()A.y=-3(x+1)2+2B.y=-3(x-2)2+2C.y=-(3x+1)2+2D.y=-(3x-1)2+210.如圖,在中,,若,,則與的比是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.12.如圖,是⊙的直徑,,點、在⊙上,、的延長線交于點,且,,有以下結(jié)論:①;②劣弧的長為;③點為的中點;④平分,以上結(jié)論一定正確的是______.13.如圖,四邊形ABCD是⊙O的外切四邊形,且AB=5,CD=6,則四邊形ABCD的周長為_______.14.方程(x﹣1)2=4的解為_____.15.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=3,AB=5,OD⊥BC于點D,則OD的長為_____.16.已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設(shè)甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)17.把一副普通撲克牌中的13張紅桃牌洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的牌上的數(shù)字是3的倍數(shù)的概率為______.18.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.三、解答題(共66分)19.(10分)已知二次函數(shù).用配方法將其化為的形式;在所給的平面直角坐標(biāo)系xOy中,畫出它的圖象.20.(6分)如圖,BD、CE是的高.(1)求證:;(2)若BD=8,AD=6,DE=5,求BC的長.21.(6分)如圖,AB和DE是直立在地面上的兩根立柱.AB=6m,某一時刻AB在陽光下的投影BC=4m(1)請你在圖中畫出此時DE在陽光下的投影.(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為9m,請你計算DE的長.22.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點,過點D作DH⊥AC于點H.(1)求證:BD=CD;(2)連結(jié)OD若四邊形AODE為菱形,BC=8,求DH的長.23.(8分)如圖,在中,,于點,于點.(1)求證:;(2)若,求四邊形的面積.24.(8分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由;(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).25.(10分)(問題情境)如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.(探究展示)(1)證明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.(拓展延伸)(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.26.(10分)(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;(3)(問題發(fā)現(xiàn))當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】可根據(jù)二次函數(shù)圖像左加右減,上加下減的平移規(guī)律進(jìn)行解答.【詳解】二次函數(shù)向右平移個單位長度得,,再向上平移個單位長度得即故選A.【點睛】本題考查了二次函數(shù)的平移,熟練掌握平移規(guī)律是解題的關(guān)鍵.2、A【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】根據(jù)題意解:標(biāo)桿的高:標(biāo)桿的影長=旗桿的高:旗桿的影長,即1.5:2.5=旗桿的高:30,∴旗桿的高==18米.故選:A.【點睛】考查了相似三角形的應(yīng)用,本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗桿的高.3、A【分析】根據(jù)拋物線y=x2+(2m-1)x+m2與坐標(biāo)軸有一個交點,可知拋物線只與y軸有一個交點,拋物線與x軸沒有交點,據(jù)此可解.【詳解】解:∵拋物線y=x2+(2m-1)x+m2與坐標(biāo)軸有一個交點,
拋物線開口向上,m2≥0,
∴拋物線與x軸沒有交點,與y軸有1個交點,
∴(2m-1)2-4m2<0
解得故選:A.【點睛】本題考查了二次函數(shù)與一元二次方程的關(guān)系,解決本題的關(guān)鍵是掌握判別式和拋物線與x軸交點的關(guān)系.4、B【解析】根據(jù)AB=5,AC=3,BC=4和勾股定理的逆定理判斷三角形的形狀,根據(jù)旋轉(zhuǎn)的性質(zhì)得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據(jù)扇形面積公式計算即可.【詳解】解:∵AB=5,AC=3,BC=4,∴△ABC為直角三角形,由題意得,△AED的面積=△ABC的面積,由圖形可知,陰影部分的面積=△AED的面積+扇形ADB的面積﹣△ABC的面積,∴陰影部分的面積=扇形ADB的面積=,故選B.【點睛】考查的是扇形面積的計算、旋轉(zhuǎn)的性質(zhì)和勾股定理的逆定理,根據(jù)圖形得到陰影部分的面積=扇形ADB的面積是解題的關(guān)鍵.5、C【分析】根據(jù)相似三角形的判定,菱形的判定方法,一元二次方程根的判別式反比例函數(shù)的性質(zhì)可得出答案.【詳解】解:A.對角線相等的平行四邊形是矩形,故本選項錯誤;B.方程x2+4x+9=0中,△=16﹣36=﹣20<0,所以方程沒有實數(shù)根,故本選項錯誤;C.等邊三角形對應(yīng)角相等,對應(yīng)邊成比例,所以是相似三角形,故本選項正確;D.函數(shù)y=,當(dāng)x>0時,y隨x的增大而減小,故本選項錯誤.故選:C.【點睛】本題考查了相似三角形的判定,菱形的判定方法,一元二次方程根的判別式反比例函數(shù)的性質(zhì),熟記定理是解題的關(guān)鍵.6、B【分析】根據(jù)位似圖形的面積比得出相似比,然后根據(jù)各點的坐標(biāo)確定其對應(yīng)點的坐標(biāo)即可.【詳解】解:∵四邊形OABC與四邊形O′A′B′C′關(guān)于點O位似,且四邊形的面積等于四邊形OABC面積的,∴四邊形OABC與四邊形O′A′B′C′的相似比為2:3,∵點A,B,C分別的坐標(biāo)),∴點A′,B′,C′的坐標(biāo)分別是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).
故選:B.【點睛】本題考查了位似變換及坐標(biāo)與圖形的知識,解題的關(guān)鍵是根據(jù)兩圖形的面積的比確定其位似比,注意有兩種情況.7、A【分析】軸對稱圖形:平面內(nèi),一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形;中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心.根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A選項:是中心對稱圖形但不是軸對稱圖形,故本選項符合題意;B選項:是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;C選項:不是中心對稱圖形,也不是軸對稱圖形,故本選項不符合題意;D選項:不是中心對稱圖形,也不是軸對稱圖形,故本選項不符合題意.故選A.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.8、C【分析】根據(jù)圖像獲取所需信息,再結(jié)合行程問題量間的關(guān)系進(jìn)行解答即可.【詳解】解:A.是表示甲離地的距離與時間關(guān)系的圖象是正確的;B.乙用時3小時,乙的速度,90÷3=,故選項B正確;C.設(shè)甲對應(yīng)的函數(shù)解析式為y=ax+b,則有:解得:∴甲對應(yīng)的函數(shù)解析式為y=-45x+90,設(shè)乙對應(yīng)的函數(shù)解析式為y=cx+d,則有:解得:即乙對應(yīng)的函數(shù)解析式為y=30x-15則有:解得:x=1.4h,故C選項錯誤;D.當(dāng)甲到達(dá)終點時乙距離終點還有90-40×1.4=45km,故選項D正確;故答案為C.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意、從圖像中獲取問題需要的條件以及數(shù)形結(jié)合的思想的應(yīng)用是解答本題的關(guān)鍵.9、A【解析】由條件可設(shè)出拋物線的頂點式,再由已知可確定出其二次項系數(shù),則可求得拋物線解析式.【詳解】∵拋物線頂點坐標(biāo)為(﹣1,1),∴可設(shè)拋物線解析式為y=a(x+1)1+1.∵與拋物線y=﹣3x1+1的形狀、開口方向完全相同,∴a=﹣3,∴所求拋物線解析式為y=﹣3(x+1)1+1.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x-h(huán))1+k中,頂點坐標(biāo)為(h,k),對稱軸為x=h.10、D【分析】根據(jù)平行即可證出△ADE∽△ABC,然后根據(jù)相似三角形的面積比等于相似比的平方,即可得出結(jié)論.【詳解】解:∵∴△ADE∽△ABC∴故選D.【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握利用平行判定兩個三角形相似和相似三角形的面積比等于相似比的平方是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、這個“果圓”被y軸截得的線段CD的長3+.【分析】連接AC,BC,有拋物線的解析式可求出A,B,C的坐標(biāo),進(jìn)而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進(jìn)而可求出CD的長.【詳解】連接AC,BC,∵拋物線的解析式為y=(x-1)2-4,∴點D的坐標(biāo)為(0,?3),∴OD的長為3,設(shè)y=0,則0=(x-1)2-4,解得:x=?1或3,∴A(?1,0),B(3,0)∴AO=1,BO=3,∵AB為半圓的直徑,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案為3+.12、①②③【分析】①根據(jù)圓內(nèi)接四邊形的外角等于其內(nèi)對角可得∠CBE=∠ADE,根據(jù)等邊對等角得出∠CBE=∠E,等量代換即可得到∠ADE=∠E;②根據(jù)圓內(nèi)接四邊形的外角等于其內(nèi)對角可得∠A=∠BCE=70,根據(jù)等邊對等角以及三角形內(nèi)角和定理求出∠AOB=40,再根據(jù)弧長公式計算得出劣弧的長;③根據(jù)圓周角定理得出∠ACD=90,即AC⊥DE,根據(jù)等角對等邊得出AD=AE,根據(jù)等腰三角形三線合一的性質(zhì)得出∠DAC=∠EAC,再根據(jù)圓周角定理得到點C為的中點;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【詳解】①∵ABCD是⊙O的內(nèi)接四邊形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正確;②∵∠A=∠BCE=70,∴∠AOB=40,∴劣弧的長=,故②正確;③∵AD是⊙O的直徑,∴∠ACD=90,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴點C為的中點,故③正確;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④錯誤.所以正確結(jié)論是①②③.故答案為①②③.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),圓周角定理,弧長的計算,等腰三角形的判定與性質(zhì),三角形內(nèi)角和定理,掌握相關(guān)性質(zhì)及公式是解題的關(guān)鍵.13、1【分析】根據(jù)圓外切四邊形的對邊之和相等求出AD+BC,根據(jù)四邊形的周長公式計算即可.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,DH=DG,CG=CF,BE=BF,∵AB=AE+EB=5,CD=DG+CG=6,AH+DH+BF+CF=AE+DG+BE+CG,
即AD+BC=AB+CD=11,
∴四邊形ABCD的周長=AD+BC+AB+CD=1,
故答案為:1.【點睛】本題考查的是切線長定理,掌握圓外切四邊形的對邊之和相等是解題的關(guān)鍵.14、x1=3,x2=﹣1【解析】試題解析:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.故答案為x1=3,x2=﹣1.15、1【分析】先利用圓周角定理得到∠ACB=90°,則可根據(jù)勾股定理計算出AC=4,再根據(jù)垂徑定理得到BD=CD,則可判斷OD為△ABC的中位線,然后根據(jù)三角形中位線性質(zhì)求解.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD為△ABC的中位線,∴OD=AC=×4=1.故答案為:1.【點睛】本題考查了圓周角定理的推論及垂徑定理,掌握“直徑所對的圓周角是直角”,及垂徑定理是關(guān)鍵.16、>【解析】要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據(jù)折線統(tǒng)計圖結(jié)合根據(jù)平均數(shù)的計算公式求出這兩組數(shù)據(jù)的平均數(shù);接下來根據(jù)方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數(shù)為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數(shù)為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術(shù)平均數(shù),折線統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握方差,算術(shù)平均數(shù),折線統(tǒng)計圖.17、【分析】根據(jù)概率的定義求解即可【詳解】一副普通撲克牌中的13張紅桃牌,牌上的數(shù)字是3的倍數(shù)有4張∴概率為故本題答案為:【點睛】本題考查了隨機(jī)事件的概率18、120°【分析】設(shè)扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設(shè)扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關(guān)鍵是掌握基本知識.三、解答題(共66分)19、(1);(2)見解析.【分析】(1)利用配方法把二次函數(shù)解析式化成頂點式即可;(2)利用描點法畫出二次函數(shù)圖象即可.【詳解】解:==,頂點坐標(biāo)為,對稱軸方程為.函數(shù)二次函數(shù)的開口向上,頂點坐標(biāo)為,與x軸的交點為,,其圖象為:故答案為(1);(2)見解析.【點睛】本題考查二次函數(shù)的配方法,用描點法畫二次函數(shù)的圖象,掌握配方法是解題的關(guān)鍵.20、(1)見解析;(2)BC=.【分析】(1)、是的高,可得,進(jìn)而可以證明;(2)在中,,,根據(jù)勾股定理可得,結(jié)合(1),對應(yīng)邊成比例,進(jìn)而證明,對應(yīng)邊成比例即可求出的長.【詳解】解:(1)證明:、是的高,,,;(2)在中,,,根據(jù)勾股定理,得,,,,,,,.【點睛】本題考查了相似三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握相似三角形的判定與性質(zhì).21、(1)見解析;(2)13.5m.【分析】(1)直接利用平行投影的性質(zhì)得出答案;(2)利用同一時刻實際物體的影子與物體的高度比值相同進(jìn)而得出答案.【詳解】解:(1)如圖所示:EF即為所求;(2)∵AB=6m,某一時刻AB在陽光下的投影BC=4m,DE在陽光下的投影長為9m,∴=,解得:DE=13.5m,答:DE的長為13.5m.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題法的關(guān)鍵是熟知平行線的性質(zhì).22、(1)見解析;(2)DH=2.【分析】(1)連接AD,根據(jù)直徑所對的圓周角是直角,即可求出∠ADB=90°,從而得出AD⊥BC,最后根據(jù)三線合一即可證出結(jié)論;(2)連接OE,根據(jù)菱形的性質(zhì)可得OA=OE=AE,從而證出△AOE是等邊三角形,從而得出∠A=60°,然后根據(jù)等邊三角形的判定即可證出△ABC是等邊三角形,從而求出∠C,根據(jù)(1)的結(jié)論即可求出CD,最后根據(jù)銳角三角函數(shù)即可求出DH.【詳解】(1)證明:如圖,連接AD.∵AB是直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如圖,連接OE.∵四邊形AODE是菱形,∴OA=OE=AE,∴△AOE是等邊三角形,∴∠A=60°,∵AB=AC,∴△ABC是等邊三角形,∴∠C=60°,∵CD=BD=,∴DH=CD?sinC=2.【點睛】此題考查的是圓周角定理推論、等腰三角形的性質(zhì)、菱形的性質(zhì)、等邊三角形的判定及性質(zhì)和解直角三角形,掌握直徑所對的圓周角是直角、三線合一、菱形的性質(zhì)、等邊三角形的判定及性質(zhì)和利用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.23、(1)見解析;(2)【分析】(1)連接OC,先根據(jù)得出∠AOC=∠BOC,利用角平分線的性質(zhì)即可得出結(jié)論;(2)在直角三角形中利用的特性結(jié)合勾股定理,利用面積公式即可求得的面積,同理可求得的面積,繼而求得答案.【詳解】(1)連接,∵,∴,∵,∴;(2)∵,∴,∵,∴,∵,∴,∴,∴,同理可得,∴.【點睛】本題考查的是圓心角、弧、弦的關(guān)系,熟知在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦也相等是解答此題的關(guān)鍵.24、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標(biāo)為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標(biāo)及對稱軸,可設(shè)出M點坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標(biāo)的方程,可求得M點的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標(biāo),表示出F點的坐標(biāo),表示出EF的長,進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當(dāng)MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當(dāng)MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時,△CBE的面積最大,此時E點坐標(biāo)為(,),即當(dāng)E點坐標(biāo)為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.25、(1)證明見解析;(2)AM=DE+BM成立,證明見解析;(3)①結(jié)論AM=AD+MC仍然成立;②結(jié)論AM=DE+BM不成立.【分析】(1)從平行線和中點這兩個條件出發(fā),延長AE、BC交于點N,易證△ADE≌△NCE,得到AD=CN,再證明AM=NM即可;(2)過點A作AF⊥AE,交CB的延長線于點F,易證△ABF≌△ADE,從而證明AM=FM,即可得證;(3)AM=DE+BM需要四邊形ABCD是正方形,故不成立,AM=AD+MC仍然成立.【詳解】(1)延長AE、BC交于點N,如圖1(1),∵四邊形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.證明:過點A作AF⊥AE,交CB的延長線于點F,如圖1(2)所示.∵四邊形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025 小學(xué)三年級科學(xué)下冊對比風(fēng)媒花與蟲媒花的特點課件
- 生產(chǎn)文員考試試題及答案
- 生物初一考試題目及答案
- 輔警國學(xué)培訓(xùn)課件
- 2026年深圳中考語文正確使用熟語試卷(附答案可下載)
- 2026年深圳中考英語題型全解全練試卷(附答案可下載)
- 危險品車駕駛員培訓(xùn)課件
- 知識類題目及答案
- 2026年深圳中考數(shù)學(xué)重難點突破試卷(附答案可下載)
- 2026年深圳中考生物三模仿真模擬試卷(附答案可下載)
- 南通南通市通州區(qū)圖書館公開招聘勞務(wù)派遣人員筆試歷年備考題庫附帶答案詳解
- 2026中工國際工程股份有限公司社會招聘筆試備考試題及答案解析
- 物業(yè)總經(jīng)理培訓(xùn)課件
- 短險銷售技巧培訓(xùn)課件
- 2025年職業(yè)衛(wèi)生健康培訓(xùn)考試試題及答案
- 2026年二十屆四中全會精神應(yīng)知應(yīng)會題庫及答案
- 科學(xué)、文化與海洋智慧樹知到期末考試答案2024年
- 工廠網(wǎng)絡(luò)設(shè)計方案
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測政治試題
- 日文常用漢字表
- QC003-三片罐206D鋁蓋檢驗作業(yè)指導(dǎo)書
評論
0/150
提交評論