江蘇無錫市塔影中學2022年數(shù)學九上期末學業(yè)水平測試模擬試題含解析_第1頁
江蘇無錫市塔影中學2022年數(shù)學九上期末學業(yè)水平測試模擬試題含解析_第2頁
江蘇無錫市塔影中學2022年數(shù)學九上期末學業(yè)水平測試模擬試題含解析_第3頁
江蘇無錫市塔影中學2022年數(shù)學九上期末學業(yè)水平測試模擬試題含解析_第4頁
江蘇無錫市塔影中學2022年數(shù)學九上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最大值為,則k的值為()A. B. C. D.2.判斷一元二次方程是否有實數(shù)解,計算的值是()A. B. C. D.3.如圖,從半徑為5的⊙O外一點P引圓的兩條切線PA,PB(A,B為切點),若∠APB=60°,則四邊形OAPB的周長等于()A.30 B.40 C. D.4.如圖,四邊形ABCD內接于,它的一個外角,分別連接AC,BD,若,則的度數(shù)為()A. B. C. D.5.若,則的值是()A. B. C. D.6.二次函數(shù)y=+2的頂點是()A.(1,2) B.(1,?2) C.(?1,2) D.(?1,?2)7.在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是()A.504m2 B.m2 C.m2 D.1009m28.要使式子有意義,則x的值可以是()A.2 B.0 C.1 D.99.從1,2,3,4四個數(shù)中任取一個數(shù)作為十位上的數(shù)字,再從2,3,4三個數(shù)中任取一個數(shù)作為個位上的數(shù)字,那么組成的兩位數(shù)是3的倍數(shù)的概率是()A. B. C. D.10.如圖,AB是⊙O的直徑,點C,D在直徑AB一側的圓上(異于A,B兩點),點E在直徑AB另一側的圓上,若∠E=42°,∠A=60°,則∠B=()A.62° B.70° C.72° D.74°二、填空題(每小題3分,共24分)11.三角形的兩邊長分別是3和4,第三邊長是方程x2﹣13x+40=0的根,則該三角形的周長為.12.如圖所示是由若干個完全相同的小正方體搭成的幾何體的主視圖和俯視圖,則這個幾何體最少是由________個正方體搭成的。13.若,則的值為_______.14.若,則的值是______.15.如圖,某校教學樓AC與實驗樓BD的水平間距CD=30m,在教學樓AC的底部C點測實驗樓頂部B點的仰角為α,且sinα=,在實驗樓頂部B點測得教學樓頂部A點的仰角是30°,則教學樓AC的高度是_____m(結果保留根號).16.某游樂場新推出一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度,其中斜坡軌道BC的坡度為,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面內)則垂直升降電梯AB的高度約為__________米.(精確到0.1米,參考數(shù)據(jù):)17.已知正六邊形的外接圓半徑為2,則它的內切圓半徑為______.18.從地面豎直向上拋出一小球,小球的高度h(米)與小球運動時間t(秒)的關系式是h=30t﹣5t2,小球運動中的最大高度是_____米.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,直線AB與x軸交于點B,與y軸交于點A,直線AB與反比例函數(shù)y=(m>0)在第一象限的圖象交于點C、點D,其中點C的坐標為(1,8),點D的坐標為(4,n).(1)分別求m、n的值;(2)連接OD,求△ADO的面積.20.(6分)如圖,AB是⊙O的直徑,,E是OB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.(1)求證:直線BF是⊙O的切線;(2)若OB=2,求BD的長.21.(6分)如圖內接于,,CD是的直徑,點P是CD延長線上一點,且.求證:PA是的切線;若,求的直徑.22.(8分)如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側),經過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;(3)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.23.(8分)已知:如圖,點P是一個反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點,PQ垂直于x軸,垂足Q的坐標為(2,0).(1)求這個反比例函數(shù)的解析式;(2)如果點M在這個反比例函數(shù)的圖象上,且△MPQ的面積為6,求點M的坐標.24.(8分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.(1)求證:是的切線;(2)若的半徑為2,求圖中陰影部分的面積.25.(10分)有一輛寬為的貨車(如圖①),要通過一條拋物線形隧道(如圖②).為確保車輛安全通行,規(guī)定貨車車頂左右兩側離隧道內壁的垂直高度至少為.已知隧道的跨度為,拱高為.(1)若隧道為單車道,貨車高為,該貨車能否安全通行?為什么?(2)若隧道為雙車道,且兩車道之間有的隔離帶,通過計算說明該貨車能夠通行的最大安全限高.26.(10分)如圖,AB∥CD,AC與BD交于點E,且AB=6,AE=4,AC=1.(1)求CD的長;(2)求證:△ABE∽△ACB.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】如圖,連接BP,由反比例函數(shù)的對稱性質以及三角形中位線定理可得OQ=BP,再根據(jù)OQ的最大值從而可確定出BP長的最大值,由題意可知當BP過圓心C時,BP最長,過B作BD⊥x軸于D,繼而根據(jù)正比例函數(shù)的性質以及勾股定理可求得點B坐標,再根據(jù)點B在反比例函數(shù)y=(k>0)的圖象上,利用待定系數(shù)法即可求出k的值.【詳解】如圖,連接BP,由對稱性得:OA=OB,∵Q是AP的中點,∴OQ=BP,∵OQ長的最大值為,∴BP長的最大值為×2=3,如圖,當BP過圓心C時,BP最長,過B作BD⊥x軸于D,∵CP=1,∴BC=2,∵B在直線y=2x上,設B(t,2t),則CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣,∴B(﹣,﹣),∵點B在反比例函數(shù)y=(k>0)的圖象上,∴k=﹣×(-)=,故選C.【點睛】本題考查的是代數(shù)與幾何綜合題,涉及了反比例函數(shù)圖象上點的坐標特征,中位線定理,圓的基本性質等,綜合性較強,有一定的難度,正確添加輔助線,確定出BP過點C時OQ有最大值是解題的關鍵.2、B【解析】首先將一元二次方程化為一般式,然后直接計算判別式即可.【詳解】一元二次方程可化為:∴故答案為B.【點睛】此題主要考查一元二次方程的根的判別式的求解,熟練掌握,即可解題.3、D【分析】連接OP,根據(jù)切線長定理得到PA=PB,再得出∠OPA=∠OPB=30°,根據(jù)含30°直角三角形的性質以及勾股定理求出PB,計算即可.【詳解】解:連接OP,∵PA,PB是圓的兩條切線,∴PA=PB,OA⊥PA,OB⊥PB,又OA=OB,OP=OP,∴△OAP≌△OBP(SSS),∴∠OPA=∠OPB=30°,∴OP=2OB=10,∴PB==5=PA,∴四邊形OAPB的周長=5+5+5+5=10(+1),故選:D.【點睛】本題考查的是切線的性質、切線長定理、勾股定理以及全等三角形的性質等知識,作出輔助線構造直角三角形是解題的關鍵.4、A【分析】先根據(jù)圓內接四邊形的性質得出∠ADC=∠EBC=65°,再根據(jù)AC=AD得出∠ACD=∠ADC=65°,故可根據(jù)三角形內角和定理求出∠CAD=50°,再由圓周角定理得出∠DBC=∠CAD=50°.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故選:A.【點睛】本題考查了圓內接四邊形的性質,以及圓周角定理的推論,熟知圓內接四邊形的對角互補是解答此題的關鍵.也考查了等腰三角形的性質以及三角形內角和定理.5、B【分析】解法一:將變形為,代入數(shù)據(jù)即可得出答案.解法二:設,,帶入式子約分即可得出答案.【詳解】解法一:解法二:設,則故選B.【點睛】本題考查比例的性質,將比例式變形,或者設比例參數(shù)是解題的關鍵.6、C【分析】因為頂點式y(tǒng)=a(x-h)2+k,其頂點坐標是(h,k),即可求出y=+2的頂點坐標.【詳解】解:∵二次函數(shù)y=+2是頂點式,∴頂點坐標為:(?1,2);故選:C.【點睛】此題主要考查了利用二次函數(shù)頂點式求頂點坐標,此題型是中考中考查重點,同學們應熟練掌握.7、A【分析】由OA4n=2n知OA2017=+1=1009,據(jù)此得出A2A2018=1009-1=1008,據(jù)此利用三角形的面積公式計算可得.【詳解】由題意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐標為(1008,0),∴A2018坐標為(1009,1),則A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故選:A.【點睛】本題主要考查點的坐標的變化規(guī)律,解題的關鍵是根據(jù)圖形得出下標為4的倍數(shù)時對應長度即為下標的一半,據(jù)此可得.8、D【解析】式子為二次根式,根據(jù)二次根式的性質,被開方數(shù)大于等于0,可得x-50,解不等式就可得到答案.【詳解】∵式子有意義,∴x-50,∴x5,觀察個選項,可以發(fā)現(xiàn)x的值可以是9.故選D.【點睛】本題考查二次根式有意義的條件.9、B【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與組成的兩位數(shù)是3的倍數(shù)的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:

∵共有12種等可能的結果,組成的兩位數(shù)是3的倍數(shù)的有4種情況,

∴組成的兩位數(shù)是3的倍數(shù)的概率是:.故選:B【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.10、C【分析】連接AC.根據(jù)圓周角定理求出∠CAB即可解決問題.【詳解】解:連接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直徑,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故選:C.【點睛】本題主要考察圓周角定理,解題關鍵是連接AC.利用圓周角定理求出∠CAB.二、填空題(每小題3分,共24分)11、1.【解析】試題分析:解方程x2-13x+40=0,(x-5)(x-8)=0,∴x1=5,x2=8,∵3+4=7<8,∴x=5.∴周長為3+4+5=1.故答案為1.考點:1一元二次方程;2三角形.12、【分析】易得這個幾何體共有3層,由俯視圖可得第一層立方體的個數(shù),由主視圖可得第二層、第三層立方體最少的個數(shù),相加即可.【詳解】結合主視圖和俯視圖可知,第一層、第二層最少各層最少1個,第三層一定有3個,∴組成這個幾何體的小正方體的個數(shù)最少是1個,故答案為:1.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.13、【解析】根據(jù)等式性質,等號兩邊同時加1即可解題.【詳解】解:∵,∴,即.【點睛】本題考查了分式的計算,屬于簡單題,熟悉分式的性質是解題關鍵.14、【分析】根據(jù)合比性質:,可得答案.【詳解】由合比性質,得,故答案為:.【點睛】本題考查了比例的性質,利用合比性質是解題關鍵.15、(10+1)【分析】首先分析圖形,解直角三角形△BEC得出CE,再解直角三角形△ABE得出AE,進而即可求出答案.【詳解】解:過點B作BE⊥AB于點E,在Rt△BEC中,∠CBE=α,BE=CD=30;可得CE=BE×tanα,∵sinα=,∴tanα=,∴CE=30×=1.在Rt△ABE中,∠ABE=30°,BE=30,可得AE=BE×tan30°=10.故教學樓AC的高度是AC=(10+1)m.故答案為:(10+1)m.【點睛】本題考查了解直角三角形-俯角、仰角的定義,要求學生能借助俯角、仰角構造直角三角形并結合圖形利用三角函數(shù)解直角三角形.16、11.2【分析】延長AB和DC相交于點E,根據(jù)勾股定理,可得CE,BE的長,根據(jù)正切函數(shù),可得AE的長,再根據(jù)線段的和差,可得答案.【詳解】解:如圖,延長AB和DC相交于點E,

由斜坡軌道BC的坡度為i=1:1,得

BE:CE=1:1.

設BE=x米,CE=1x米,

在Rt△BCE中,由勾股定理,得

BE1+CE1=BC1,

即x1+(1x)1=(11)1,

解得x=11,

即BE=11米,CE=12米,

∴DE=DC+CE=8+12=31(米),

由tan36°≈0.73,得tanD=≈0.73,

∴AE≈0.73×31=13.36(米).

∴AB=AE-BE=13.36-11=11.36≈11.2(米).

故答案為:11.2.【點睛】本題考查了解直角三角形的應用,作出輔助線構造直角三角形,利用勾股定理得出CE,BE的長度是解題關鍵.17、【解析】解:如圖,連接OA、OB,OG.∵六邊形ABCDEF是邊長為2的正六邊形,∴△OAB是等邊三角形,∴∠OAB=60°,∴OG=OA?sin60°=2×=,∴半徑為2的正六邊形的內切圓的半徑為.故答案為.【點睛】本題考查了正多邊形和圓、等邊三角形的判定與性質;熟練掌握正多邊形的性質,證明△OAB是等邊三角形是解決問題的關鍵.18、1【分析】首先理解題意,先把實際問題轉化成數(shù)學問題后,知道解此題就是求出h=30t﹣5t2的頂點坐標即可.【詳解】解:h=﹣5t2+30t=﹣5(t2﹣6t+9)+1=﹣5(t﹣3)2+1,∵a=﹣5<0,∴圖象的開口向下,有最大值,當t=3時,h最大值=1.故答案為:1.【點睛】本題考查了二次函數(shù)的應用,解此題的關鍵是把實際問題轉化成數(shù)學問題,利用二次函數(shù)的性質就能求出結果.三、解答題(共66分)19、(1)m=8,n=1.(1)10【分析】(1)把代入解析式可求得m的值,再把點D(4,n)代入即可求得答案;(1)用待定系數(shù)法求得直線AB的解析式,繼而求得點A的坐標,再利用三角形面積公式即可求得答案.【詳解】(1)∵反比例函數(shù)(>0)在第一象限的圖象交于點,∴,∴,∴函數(shù)解析式為,將代入得,.(1)設直線AB的解析式為,由題意得,解得:,∴直線AB的函數(shù)解析式為,令,則,∴,∴.【點睛】本題考查了用待定法求函數(shù)解析式及三角形面積公式,熟練掌握待定法求函數(shù)解析式是解題的關鍵.20、(1)證明見解析;(2)BD=.【分析】(1)連接OC,由已知可得∠BOC=90°,根據(jù)SAS證明△OCE≌△BFE,根據(jù)全等三角形的對應角相等可得∠OBF=∠COE=90°,繼而可證明直線BF是⊙O的切線;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF的長,然后由S△ABF=,即可求出BD=.【詳解】解:(1)連接OC,∵AB是⊙O的直徑,,∴∠BOC=90°,∵E是OB的中點,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直線BF是⊙O的切線;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【點睛】本題考查了切線的判定、全等三角形的判定與性質、勾股定理、三角形面積的不同表示方法,熟練掌握相關的性質與定理是解題的關鍵.21、(1)詳見解析;(2)的直徑為.【解析】連接OA,根據(jù)圓周角定理求出,再根據(jù)同圓的半徑相等從而可得,繼而根據(jù)等腰三角形的性質可得出,繼而由,可得出,從而得出結論;利用含的直角三角形的性質求出,可得出,再由,可得出的直徑.【詳解】連接OA,如圖,,,又,,又,,,,是的切線.在中,,,又,,,.的直徑為.【點睛】本題考查了切線的判定、圓周角定理、含30度角的直角三角形的性質,熟練掌握切線的判定定理、圓周角定理及含30度角的直角三角形的性質是解題的關鍵.22、(1)A(-1,0),;(2);(3)P的坐標為(1,)或(1,-4).【分析】(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直線l經過點A,得到,故,令,即,由于CD=4AC,故點D的橫坐標為4,即有,得到,從而得出直線l的函數(shù)表達式;(2)過點E作EF∥y軸,交直線l于點F,設E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面積的最大值為,而△ACE的面積的最大值為,所以,解得;(3)令,即,解得,,得到D(4,5a),因為拋物線的對稱軸為,設P(1,m),然后分兩種情況討論:①若AD是矩形的一條邊,②若AD是矩形的一條對角線.【詳解】解:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直線l經過點A,∴,,∴,令,即,∵CD=4AC,∴點D的橫坐標為4,∴,∴,∴直線l的函數(shù)表達式為;(2)過點E作EF∥y軸,交直線l于點F,設E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面積的最大值為,∵△ACE的面積的最大值為,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴拋物線的對稱軸為,設P(1,m),①若AD是矩形的一條邊,則Q(-4,21a),m=21a+5a=26a,則P(1,26a),∵四邊形ADPQ為矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一條對角線,則線段AD的中點坐標為(,),Q(2,),m=,則P(1,8a),∵四邊形APDQ為矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).綜上所述,以點A、D、P、Q為頂點的四邊形能成為矩形,點P的坐標為(1,)或(1,-4).考點:二次函數(shù)綜合題.23、(1)y=﹣;(2)M(5,﹣)或(﹣1,8).【解析】(1)由Q(2,0),推出P(2,-4),利用待定系數(shù)法即可解決問題;

(2)根據(jù)三角形的面積公式求出MN的長,分兩種情形求出點M的坐標即可.【詳解】(1)把x=2代入y=﹣2x得y=﹣4∴P(2,﹣4),設反比例函數(shù)解析式y(tǒng)=(k≠0),∵P在此圖象上∴k=2×(﹣4)=﹣8,∴y=﹣;(2)∵P(2,﹣4),Q(2,0)∴PQ=4,過M作MN⊥PQ于N.則?PQ?MN=6,∴MN=3,設M(x,﹣),則x=2+3=5或x=2﹣3=﹣1當x=5時,﹣=﹣,當x=﹣1時,﹣=1,∴M(5,﹣)或(﹣1,8).故答案為:(1)y=﹣;(2)M(5,﹣)或(﹣1,8).【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,解題的關鍵是用待定系數(shù)法求反比例函數(shù)的解析式,利用數(shù)形結合的思想表示出三角形的面積也是解答本題的關鍵.24、(1)見解析(2)圖中陰影部分的面積為π.【分析】(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質即可證明;(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論