版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.2.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.3.已知為銳角,且,則等于()A. B. C. D.4.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.45.已知函數(shù),則()A.2 B.3 C.4 D.56.已知,若則實數(shù)的取值范圍是()A. B. C. D.7.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.8.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.9.拋物線的準線方程是,則實數(shù)()A. B. C. D.10.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.12.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設是實數(shù),“”是“”的充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.14.設等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.15.若函數(shù),則的值為______.16.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,討論函數(shù)的單調(diào)性;(2)若,當時,函數(shù),求函數(shù)的最小值.18.(12分)設橢圓的左右焦點分別為,離心率是,動點在橢圓上運動,當軸時,.(1)求橢圓的方程;(2)延長分別交橢圓于點(不重合).設,求的最小值.19.(12分)已知函數(shù).(1)當時,不等式恒成立,求的最小值;(2)設數(shù)列,其前項和為,證明:.20.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.21.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大??;(2)若,且直線與平面所成角為,求的值.22.(10分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由復數(shù)的幾何意義可得表示復數(shù),對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數(shù)的幾何意義可得,復數(shù)對應的點為,復數(shù)對應的點為,所以,其中,故選C【點睛】本題主要考查復數(shù)的幾何意義,由復數(shù)的幾何意義,將轉(zhuǎn)化為兩復數(shù)所對應點的距離求值即可,屬于基礎題型.2、D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點睛】本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).3、C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎題.4、A【解析】
根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.5、A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學生的計算能力.6、C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,7、D【解析】
根據(jù)題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.8、B【解析】
求得的導函數(shù),由此構造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結合換元法,求得的取值范圍.【詳解】,設,要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.9、C【解析】
根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.10、B【解析】
由,可得,解出即可判斷出結論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.11、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.12、D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質(zhì)可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求角,再用余弦定理找到邊的關系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應用以及三條線段構成三角形的條件;基礎題.14、2【解析】
直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學生的計算能力.15、【解析】
根據(jù)題意,由函數(shù)的解析式求出的值,進而計算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質(zhì)、對數(shù)運算法則的應用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.16、80211【解析】
由,利用二項式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點睛】本題考查了二項式定理的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)的最小值為【解析】
(1)由題可得函數(shù)的定義域為,,當時,,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當時,令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當時,恒成立,所以函數(shù)在上單調(diào)遞增.綜上,當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當時,函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增.(2)方法一:當時,,,設,,則,所以函數(shù)在上單調(diào)遞減,所以,當且僅當時取等號.當時,設,則,所以,設,,則,所以函數(shù)在上單調(diào)遞減,且,,所以存在,使得,所以當時,;當時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,因為,,所以,所以,當且僅當時取等號.所以當時,函數(shù)取得最小值,且,故函數(shù)的最小值為.方法二:當時,,,則,令,,則,所以函數(shù)在上單調(diào)遞增,又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因為,所以當時,恒成立,所以當時,恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為.18、(1);(2)【解析】
(1)根據(jù)題意直接計算得到,,得到橢圓方程.(2)不妨設,且,設,代入數(shù)據(jù)化簡得到,故,得到答案.【詳解】(1),所以,,化簡得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設,且,設,所以由,得,所以,由,得,代入,化簡得:,由于,所以,同理可得,所以,所以當時,最小為【點睛】本題考查了橢圓方程,橢圓中的向量運算和最值,意在考查學生的計算能力和綜合應用能力.19、(1);(2)證明見解析.【解析】
(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當時,方程的,因此在區(qū)間上恒為負數(shù).所以時,,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當時,方程有兩個不等實根,且滿足,所以函數(shù)的導函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當時,在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點睛】本題考查利用導數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學生的邏輯推理能力以及數(shù)學計算能力,是一道難題.20、(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標系,求出平面的法向量與,坐標代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因為平面,所以平面平面.易知,且為的中點,所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設的中點為,以為原點,以,,所在直線分別為,,軸,建立空間直角坐標系,則,,,,,所以,,.設平面的法向量為,由得取.設直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運算求解能力和推理論證能力,屬于基礎題.21、(1);(2).【解析】
(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結.因為∥,所以∥.因為,所以.因為側面為等邊三角形,所以又因為平面平面,平面平面,平面,所以平面,所以兩兩垂直.以為空間坐標系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標系,因為,則,,.設平面的法向量為,則,即.取,則,所以.又為平面的法向量,設平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即,化簡得,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行筆試題庫及答案解析
- 2026年國家公務員考試行測高分突破秘籍
- 2026年健康飲食與營養(yǎng)學初級營養(yǎng)師筆試模擬題
- 2026年交通運輸工程結構評估與修復中級專業(yè)題庫
- 鶴壁市山城區(qū)2025年網(wǎng)格員考試試題及答案
- 未來五年城市園林綠化服務企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年電子薄型載帶企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年蛇毒制品企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 樂平市三支一扶考試真題2025
- 2024年麗江市衛(wèi)生系統(tǒng)考試真題
- 國家自然基金形式審查培訓
- 2026馬年卡通特色期末評語(45條)
- NCCN臨床實踐指南:肝細胞癌(2025.v1)
- 免租使用協(xié)議書
- 2025 AHA心肺復蘇與心血管急救指南
- 2026年九江職業(yè)大學單招職業(yè)適應性測試題庫帶答案詳解
- 危化品庫區(qū)風險動態(tài)評估-洞察與解讀
- 激光焊接技術規(guī)范
- 消防聯(lián)動排煙天窗施工方案
- 2025年高考物理 微專題十 微元法(講義)(解析版)
- 2025年國家能源投資集團有限責任公司校園招聘筆試備考題庫含答案詳解(新)
評論
0/150
提交評論