云南省曲靖市宣威五中第八中學2025屆高二上數學期末考試模擬試題含解析_第1頁
云南省曲靖市宣威五中第八中學2025屆高二上數學期末考試模擬試題含解析_第2頁
云南省曲靖市宣威五中第八中學2025屆高二上數學期末考試模擬試題含解析_第3頁
云南省曲靖市宣威五中第八中學2025屆高二上數學期末考試模擬試題含解析_第4頁
云南省曲靖市宣威五中第八中學2025屆高二上數學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省曲靖市宣威五中第八中學2025屆高二上數學期末考試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量是兩兩垂直的單位向量,且,則()A.5 B.1C.-1 D.72.已知圓:和點,是圓上一點,線段的垂直平分線交于點,則點的軌跡方程是:()A. B.C. D.3.已知雙曲線,其漸近線方程為,則a的值為()A. B.C. D.24.已知定義在R上的函數滿足,且當時,,則下列結論中正確的是()A. B.C. D.5.在空間直角坐標系中,已知點,,則線段的中點坐標與向量的模長分別是()A.;5 B.;C.; D.;6.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數條直線,使得B.若,則存在無數條直線,使得C.若存在無數條直線,使得,則D.若存在無數條直線,使得,則7.如圖,在棱長為的正方體中,為線段的中點,為線段的中點,則直線到直線的距離為()A. B.C. D.8.函數的值域為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.10.從1,2,3,4,5中隨機抽取三個數,則這三個數能成為一個三角形三邊長的概率為()A. B.C. D.11.命題“”的一個充要條件是()A. B.C. D.12.為了調查修水縣2019年高考數學成績,在高考后對我縣6000名考生進行了抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數學成績作為一個樣本,這項調查宜采用的抽樣方法是()A.系統(tǒng)抽樣法 B.分層抽樣法C.抽簽法 D.簡單的隨機抽樣法二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長為1的正方體中,點M為線段上的動點,下列四個結論:①存在點M,使得直線AM與直線夾角為30°;②存在點M,使得與平面夾角的正弦值為;③存在點M,使得三棱錐體積為;④存在點M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結論正確的有______.(填上正確結論的序號)14.已知函數,則曲線在點處的切線方程為______.15.圓的圓心坐標為___________;半徑為___________.16.已知向量,向量,若,則實數的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,若焦距為4,點P是橢圓上與左、右頂點不重合的點,且的面積最大值.(1)求橢圓的方程;(2)過點的直線交橢圓于點、,且滿足(為坐標原點),求直線的方程.18.(12分)已知圓,點(1)若點在圓外部,求實數的取值范圍;(2)當時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率19.(12分)設命題p:,命題q:關于x的方程無實根.(1)若p為真命題,求實數m的取值范圍;(2)若為假命題,為真命題,求實數m的取值范圍20.(12分)已知數列的前n項和為,且(1)求數列的通項公式;(2)若,數列的前n項和為,求的值21.(12分)已知函數(1)求函數的圖象在點處的切線方程;(2)求函數的極值22.(10分)已知圓C過點,,它與x軸的交點為,,與y軸的交點為,,且.(1)求圓C的標準方程;(2)若,直線,從點A發(fā)出的一條光線經直線l反射后與圓C有交點,求反射光線所在的直線的斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據單位向量的定義和向量的乘法運算計算即可.【詳解】因為向量是兩兩垂直的單位向量,且所以.故選:B2、B【解析】先由在線段的垂直平分線上得出,再由題意得出,進而由橢圓定義可求出點的軌跡方程.【詳解】如圖,因為在線段的垂直平分線上,所以,又點在圓上,所以,因此,點在以、為焦點的橢圓上.其中,,則.從而點的軌跡方程是.故選:B.3、A【解析】由雙曲線方程,根據其漸近線方程有,求參數值即可.【詳解】由漸近線,結合雙曲線方程,∴,可得.故選:A.4、B【解析】由可得,利用導數判斷函數在上的單調性,由此比較函數值的大小確定正確選項.【詳解】∵∴,當時,,∴,故∴在內單調遞增,又,∴,所以故選:B5、B【解析】根據給定條件利用中點坐標公式及空間向量模長的坐標表示計算作答.【詳解】因點,,所以線段的中點坐標為,.故選:B6、D【解析】根據直線和直線,直線和平面的位置關系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當時,,則存在無數條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數條直線,使得,B正確;若存在無數條直線,使得,,,則,C正確;當時,存在無數條直線,使得,D錯誤.故選:D.7、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉化成點到直線的距離,結合余弦定理即同角三角函數基本關系,求得,因此可得,進而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因為,分別為,的中點,因為,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因為,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C8、C【解析】根據基本不等式即可求出【詳解】因為,當且僅當時取等號,所以函數的值域為故選:C9、B【解析】根據輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎題.10、C【解析】列舉出所有情況,然后根據兩邊之和大于第三邊數出能構成三角形的情況,進而得到答案.【詳解】5個數取3個數的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.11、D【解析】結合不等式的基本性質,利用充分條件和必要條件的定義判斷.【詳解】A.當時,滿足,推不出,故不充分;B.當時,滿足,推不出,故不充分;C.當時,推不出,故不必要;D.因為,故充要,故選:D12、B【解析】考生分為幾個不同的類型或層次,由此可以確定抽樣方法;【詳解】6000名考生進行抽樣調查,其中2000名文科考生,3800名理科考生,200名藝術和體育類考生,從中抽到了120名考生的數學成績作為一個樣本又文科考生、理科考生、藝術和體育類考生會存在差異,采用分層抽樣法較好故選:B.【點睛】本題主要考查的是分層抽樣,掌握分層抽樣的有關知識是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】對①:由連接,,由平面,即可判斷;對③:設到平面的距離為,則,所以即可判斷;對④:以為坐標原點建立如圖所示的空間直角坐標系,設,利用向量法求出與,比較大小即可判斷;對②:設與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯誤;對③:設到平面的距離為,則,所以,故③正確;對④:以為坐標原點建立如圖所示的空間直角坐標系,設,則,0,,,0,,,,,,,,所以,,,,,,設平面的法向量為,,,則,即,取,,,又,1,是平面的一個法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯誤對②:由④的解析知,,,,設平面的法向量為,則,即,取,則,設與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.14、【解析】先求函數的導數,再利用導數的幾何意義求函數在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導數的幾何意義,重點考查計算能力,屬于基礎題型.15、①.②.【解析】配方后可得圓心坐標和半徑【詳解】將圓的一般方程化為圓標準方程是,圓心坐標為,半徑為故答案為:;16、2【解析】根據,由求解.【詳解】因為向量,向量,且,所以,解得,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結合題干條件得到,進而求出直線方程.【小問1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問2詳解】①當直線的斜率存在時,設,代入③整理得,設、,則,所以,點到直線的距離因為,即,又由,得,所以,.而,,即,解得:,此時;②當直線的斜率不存在時,,直線交橢圓于點、.也有,經檢驗,上述直線均滿足,綜上:直線的方程為或.【點睛】圓錐曲線中,有關向量的題目,要結合條件選擇不同的方法,一般思路有轉化為三角形面積,或者線段的比,或者由向量得到共線等.18、(1);(2)最大值為2,【解析】(1)根據題意,將圓的方程變形為標準方程,由點與圓的位置關系可得,求解不等式組得答案;(2)當時,圓的方程為,求出圓心與半徑,設,則,分析可得面積的最大值,結合直線與圓的位置關系可得圓心到直線的距離,設直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當時,圓的方程為,圓心為,半徑,設,則,當時,面積取得最大值,且其最大值為2,此時為等腰直角三角形,圓心到直線的距離,設直線的方程為,即,則有,解得,即直線的斜率【點睛】易錯點點睛:本題第一問解答過程中,容易忽視二元二次方程表示圓的條件,導致出錯,解題的時候要考慮周全,考查運算求解能力,是中檔題.19、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據命題真假求參數的取值范圍,由復合命題真假判斷命題真假,并求參數的取值范圍,屬于基礎題.20、(1);(2).【解析】(1)根據給定的遞推公式結合“當時,”探求相鄰兩項的關系計算作答.(2)由(1)的結論求出,再利用裂項相消法求出,即可作答.【小問1詳解】依題意,,,則當時,,于是得:,即,而當時,,即有,因此,,,所以數列是以2為首項,2為公比的等比數列,,所以數列的通項公式是.【小問2詳解】由(1)知,,從而有,所以.21、(1)(2)極大值為12,極小值-15【解析】(1)利用導數的幾何意義求解即可.(2)利用導數求解極值即可.【小問1詳解】,,切點為,故切線方程為,即;【小問2詳解】令,得或列表:-12+0-0+單調遞增12單調遞減-15單調遞增函數的極大值為,函數的極小值為.22、(1);(2).【解析】(1)設圓C的一般式方程為:,然后根據題意列出方程,解出D,E,F的值即可得到圓的方程;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論