版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省石家莊市外國(guó)語(yǔ)學(xué)校2024年高三下學(xué)期第四次質(zhì)量檢測(cè)試題數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.2.《周易》是我國(guó)古代典籍,用“卦”描述了天地世間萬(wàn)象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽(yáng)爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽(yáng)爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽(yáng)爻的概率為()A. B. C. D.3.函數(shù)的對(duì)稱(chēng)軸不可能為()A. B. C. D.4.如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.5.在棱長(zhǎng)為a的正方體中,E、F、M分別是AB、AD、的中點(diǎn),又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當(dāng)時(shí),平面 D.當(dāng)m變化時(shí),直線l的位置不變6.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.7.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為則()A. B. C. D.8.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.29.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.10.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.11.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.8412.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]二、填空題:本題共4小題,每小題5分,共20分。13.已知△ABC得三邊長(zhǎng)成公比為2的等比數(shù)列,則其最大角的余弦值為_(kāi)____.14.函數(shù)的值域?yàn)開(kāi)____.15.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為_(kāi)__________.16.已知過(guò)點(diǎn)的直線與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線段上,過(guò)作軸的平行線交函數(shù)的圖象于點(diǎn),當(dāng)∥軸,點(diǎn)的橫坐標(biāo)是三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知圓外有一點(diǎn),過(guò)點(diǎn)作直線.(1)當(dāng)直線與圓相切時(shí),求直線的方程;(2)當(dāng)直線的傾斜角為時(shí),求直線被圓所截得的弦長(zhǎng).19.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長(zhǎng)度.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時(shí)所對(duì)應(yīng)的的值.21.(12分)已知函數(shù),.(1)當(dāng)為何值時(shí),軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).22.(10分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.2、B【解析】
基本事件總數(shù)為個(gè),都恰有兩個(gè)陽(yáng)爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽(yáng)爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透?jìng)鹘y(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識(shí),考查抽象概括能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.3、D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱(chēng)性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱(chēng)軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.4、C【解析】
建立坐標(biāo)系,寫(xiě)出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類(lèi)綜合問(wèn)題.通過(guò)向量的運(yùn)算,將問(wèn)題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類(lèi)問(wèn)題的一般方法.5、C【解析】
根據(jù)線面平行與垂直的判定與性質(zhì)逐個(gè)分析即可.【詳解】因?yàn)?所以,因?yàn)镋、F分別是AB、AD的中點(diǎn),所以,所以,因?yàn)槊婷?所以.選項(xiàng)A、D顯然成立;因?yàn)?平面,所以平面,因?yàn)槠矫?所以,所以B項(xiàng)成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項(xiàng)不成立.故選:C【點(diǎn)睛】本題考查直線與平面的位置關(guān)系.屬于中檔題.6、B【解析】
因?yàn)?,所以,故選B.7、B【解析】
求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運(yùn)算,求得的值.【詳解】易知,則.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對(duì)應(yīng),考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.8、B【解析】
化簡(jiǎn)得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類(lèi)型求參數(shù),意在考查學(xué)生的計(jì)算能力.9、D【解析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對(duì)稱(chēng).若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱(chēng)性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.10、A【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)相等的條件,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,是基礎(chǔ)題.11、B【解析】
由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.12、B【解析】
先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長(zhǎng)分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對(duì)的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點(diǎn):余弦定理及等比數(shù)列的定義.14、【解析】
利用配方法化簡(jiǎn)式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查的是用配方法求函數(shù)的值域問(wèn)題,屬基礎(chǔ)題。15、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿(mǎn)足條件,故得到此時(shí)輸出的b值為13.故答案為13.16、【解析】
通過(guò)設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過(guò)∥軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)分類(lèi)討論去絕對(duì)值號(hào),即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時(shí)成立,可得的最小值,即可求解.【詳解】(1)①當(dāng)時(shí),不等式可化為,得,無(wú)解;②當(dāng)-2≤x≤1時(shí),不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時(shí),不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,分類(lèi)討論,函數(shù)的最值,屬于中檔題.18、(1)或(2).【解析】
(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長(zhǎng)公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當(dāng)斜率不存在時(shí),直線的方程為,滿(mǎn)足題意當(dāng)斜率存在時(shí),設(shè)直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當(dāng)直線的傾斜角為時(shí),直線的方程為圓心到直線的距離為∴弦長(zhǎng)為【點(diǎn)睛】本題考查了直線的方程、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式及弦長(zhǎng)公式,培養(yǎng)了學(xué)生分析問(wèn)題與解決問(wèn)題的能力.19、(1).(2).【解析】
(1)以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(﹣1,0,2),(﹣2,﹣1,1),計(jì)算夾角得到答案.(2)設(shè),0≤λ≤1,計(jì)算P(0,2λ,2﹣2λ),計(jì)算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計(jì)算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,∵AD=2,AB=AF=2EF=2,P是DF的中點(diǎn),∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長(zhǎng)度|PF|.【點(diǎn)睛】本題考查了異面直線夾角,根據(jù)二面角求長(zhǎng)度,意在考查學(xué)生的空間想象能力和計(jì)算能力.20、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對(duì)應(yīng)的的值為.【解析】
(1)當(dāng)時(shí),求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,利用導(dǎo)函數(shù),可得的范圍,再表達(dá),構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時(shí)所對(duì)應(yīng)的的值.【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當(dāng)時(shí),,所以:,時(shí),,當(dāng)時(shí),,當(dāng),時(shí),,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿(mǎn)足,△,可得:或;由,可得:.,函數(shù)的對(duì)稱(chēng)軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因?yàn)椋簳r(shí),,所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因?yàn)椋?,?),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當(dāng)取到最小值時(shí)所對(duì)應(yīng)的的值為;【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問(wèn)題,考查利用導(dǎo)數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題.21、(1);(2)見(jiàn)解析.【解析】
(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;(2)令,,然后對(duì)實(shí)數(shù)進(jìn)行分類(lèi)討論,結(jié)合和的符號(hào)來(lái)確定函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線與軸相切于點(diǎn),則,即,解得.所以,當(dāng)時(shí),軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時(shí),函數(shù)有
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026中鐵城建集團(tuán)有限公司招聘?jìng)淇碱}庫(kù)(24人)及參考答案詳解
- 2026山東濟(jì)南高新區(qū)海川中學(xué)教師崗招聘?jìng)淇碱}庫(kù)完整答案詳解
- 2026四川成都市第二人民醫(yī)院招聘?jìng)淇碱}庫(kù)有答案詳解
- 2026年上半年四川中醫(yī)藥高等專(zhuān)科學(xué)校第一批編外教職工招聘7人備考題庫(kù)及參考答案詳解1套
- 2025-2030中國(guó)葡萄產(chǎn)業(yè)發(fā)展趨勢(shì)及前景分析研究報(bào)告
- 2026吉林北華大學(xué)招聘博士人才212人備考題庫(kù)(1號(hào))(含答案詳解)
- 2026北京市第十九中學(xué)招聘?jìng)淇碱}庫(kù)及答案詳解(易錯(cuò)題)
- 2026山東濰坊高新區(qū)美加學(xué)校招聘?jìng)淇碱}庫(kù)及答案詳解(奪冠系列)
- 海南2025年海南省安寧醫(yī)院校園招聘事業(yè)編制人員13人筆試歷年參考題庫(kù)附帶答案詳解
- 浙江浙江越城區(qū)人武部招聘3名專(zhuān)職民兵教練員筆試歷年參考題庫(kù)附帶答案詳解
- 2025年山東省濟(jì)南市中考英語(yǔ)真題卷含答案解析
- 侍酒師崗前實(shí)操操作考核試卷含答案
- 2025-2026學(xué)年六年級(jí)英語(yǔ)上冊(cè)期末試題卷(含聽(tīng)力音頻)
- 【一年級(jí)】【數(shù)學(xué)】【秋季上】期末家長(zhǎng)會(huì):花開(kāi)有“數(shù)”一年級(jí)路【課件】
- 2025四川成都高新區(qū)婦女兒童醫(yī)院招聘技師、醫(yī)生助理招聘5人參考題庫(kù)附答案解析
- 2026年高考語(yǔ)文復(fù)習(xí)散文閱讀(四)
- 眼部艾灸課件
- 學(xué)堂在線 雨課堂 學(xué)堂云 實(shí)繩結(jié)技術(shù) 期末考試答案
- 高考語(yǔ)言運(yùn)用題型之長(zhǎng)短句變換 學(xué)案(含答案)
- 2023年婁底市建設(shè)系統(tǒng)事業(yè)單位招聘考試筆試模擬試題及答案解析
- GB/T 16823.3-2010緊固件扭矩-夾緊力試驗(yàn)
評(píng)論
0/150
提交評(píng)論