版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
摘要本設計包括三個部分:一般部分、專題部分和翻譯部分。一般部分為張雙樓礦1.8Mt/a新井初步設計,共分10章:1.礦區(qū)概述及井田地質特征;2.井田境界和儲量;3.礦井工作制度、設計生產能力及服務年限;4.井田開拓;5.準備方式—采區(qū)巷道布置;6.采煤方法;7.井下運輸;8.礦井提升;9.礦井通風與安全技術;10.礦井基本技術經(jīng)濟指標。張雙樓煤礦位于徐州市西北,距徐州市約79km,在江蘇沛縣安國鎮(zhèn)境內。井田水平標高為-200m~-1200m,走向長8.47~10.79km,平均10.18km,傾斜寬平均為2.9km,水平面積約29.52km2。井田內可采煤層為9煤,煤層賦存穩(wěn)定,厚度平均4.5m,煤層傾角16~24°,平均22°。井田內工業(yè)儲量為192.36Mt,可采儲量為124.13Mt。礦井平均涌水量為300m3/h,相對瓦斯涌出量為0.77m3/t,屬低瓦斯礦井;煤塵有一定爆炸危險性,自燃發(fā)火期為3~6個月。張雙樓礦年設計生產能力為1.8Mt/a,服務年限為53.0年。礦井采用立井兩水平開拓暗立井直接延深開拓方式;采用中央并列與兩翼對角式混合通風方式;一水平標高-575m,二水平標高-950m。礦井采用走向長壁綜采一次采全厚采煤法;煤炭運輸采用膠帶與底卸式礦車,輔助運輸采用蓄電池電機車牽引礦車。礦井年工作日為330d,每天凈提升時間為16h,工作制度采用“三八”制。專題部分題目是:淺析礦井水的資源化。翻譯部分是一篇關于復合載荷下沙層地基運轉模型的論文,英文原文題目為:Aplasticitymodelforthebehaviouroffootingsonsandundercombinedloading。關鍵詞:立井;采區(qū);綜采;中央并列式;兩翼對角式
ABSTRACTThisdesignincludesofthreeparts:thegeneralpart,specialsubjectpartandtranslatedpart.ThegeneralpartisanewpreliminarydesignofZhangshuanglouMinethatannualoutputis1.8Mt.Thedesignincludestenchapters:1.Mineandminegeologicalfeaturesoutlined;2.Waidarealmandreserves;3.Minesystem,designcapacityandlengthofservice;4.Waidadevelop;5.topreparetheway-withthedistrictroadwaylayout;6.miningmethods;7.undergroundtransport;8.minehoist;9.mineventilationandsecuritytechnologies;10.minethebasictechnicalandeconomicindicators.ZhangshuanglouMinelocatedintheCountytownofAnguowhichisinthenorthwestofXuzhouCity,anditisabout79kmawayfromXuzhou.Thelevelelevationoftheminefieldisfrom-200m~-1200m,thecoalfieldlengthonthestrikeis8.47kmto10.79km,average10.18km,thewidthonthedipis2.9kmonaverage,thetotalplaneareaofthemineisabout29.52km2.Thereisonlyoneexploringlayer_numbernine.Thecoalseamisstable,thecoalseamthicknessis4.5m.Itsdipangleis16to24degree,22degreeonaverage.Theindustryreservesoftheminefieldare192.36milliontonsandtheworkablereservesare124.13milliontons.TheaverageinflowrateinZhangshuangloumineis300m3/h.Therelativegasemissionis0.77m3/t,itisalowergassymine.Thecoaldusthavealittleexplosionhazardandself-combustiontendencyis3to6months.TheproductivecapacityofZhangshuanglouMineis1.8milliontonsperyear,andtheservicelifeis53.0years.Mineusesshaftandtwo-leveldevelopment.Thetypeofmineventilationsystemiscentralabreastandwingsdiagonal.Thefirstlevelisat-575m,Thesecondlevelisat-950m.Highcuttingminingmethodisusesbythemine.Mainroadwaymakesuseofbeltconveyorandbottom-dumpwagontotransportcoalresource,andminecartobeassistanttransport.Mineisworkingdaysfor330days,theneteverydaytoenhancethetime16hours.Minesystemis"3-8"structure.Thetitleofspecialsubjectis“Analysisofminewaterresourceutilization”.Thetranslationpartisatreatiseaboutaplasticitymodelforthebehaviouroffootingsonsandundercombinedloading.Keywords:shaft;panels;fullymechanizedmining;centralparallel;wingsdiagonalventilation
目錄一般部分1礦區(qū)概述及井田地質特征 頁英文原文AplasticitymodelforthebehaviouroffootingsonsandundercombinedloadingG.T.HOULSBY1,M.J.CASSIDY2(1.DepartmenofOffshoreEngineering,OxfordUniversity,UK;2.CenterforOffshoreFoundationSystems,UniversityofWesternAustralia(formerlyatOxfordUniversity))ABSTRACT:Acompletetheoreticalmodelisdescribedforthebehaviorofrigidcircularfootingsonsand,whensubjectedtocombinedvertical,horizontalandmomentloading.Themodel,whichisexpressedintermsofwork-hardeningplasticitytheory,isbasedonaseriesoftestsspecificallydesignedtoallowevaluationofthevariouscomponentsofthetheory.Themodelmakesuseoftheforceresultantsandthecorrespondingdisplacementsofthefooting,andallowspredictionsofresponsetobemadeforanyloadordisplacementcombination.Itisverifiedbycomparisonwiththedatabaseoftests.Theuseofthemodelisthenillustratedbysomedemonstrationcalculationsfortheresponseofajack-upunitonsand.Thisexampleillustratestheprincipalpurposeofthedevelopment,whichistoallowarealisticmodellingoffoundationbehaviourtobeincludedasanintegralpartofastructuralanalysis.KEYWORDS:footings/foundations;modeltests;numericalmodellingandanalysis;offshoreengineering;plasticity;sandsINTRODUCTIONThepurposeofthispaperistodescribeatheoreticalmodel,basedonstrain-hardeningplasticitytheory,whichiscapableofdescribingthebehaviourofacircularfootingonsandwhenitissubjectedtoallpossiblecombinationsofdrainedvertical,horizontalandmomentloading.Themotivationforthisworkcomesprincipallyfromtheoffshoreindustry,specificallyarisingfromtheproblemofassessmentofjack-upunitsunderextremeloading.Theapplicationsare,however,muchbroader,sincethemodelcouldbeappliedtomanyinstancesofcombinedloadingofafootingonsand.Structuralengineerscarryoutdetailedanalysesofjack-upunits,andaskgeotechnicalengineerstoprovidethemwiththevaluesofspringstiffnessestomodelthefoundations.Geotechnicalengineerstendtotaketheviewthatsuchasimplisticviewoffoundationbehaviourisunrealistic.Unfortunately,however,theyoftendescribethecomplexitiesandnon-linearitiesoffoundationbehaviourbyaseriesofadhocprocedures,whichastructuralengineercannotimplementwithinastandardanalysis.Thepurposeofthemodeldescribedhereistoprovideameansbywhichthestructuralandgeotechnicalengineerscancommunicate.Geotechnicalengineersmustbepreparedtore-casttheirknowledgeoffoundationbehaviourwithinaterminology(plasticitytheory)thatisamenabletonumericalanalysis.Structuralengineersmustacceptthatsoilbehaviourcannotbedescribedmerelyby‘springs’,butcanbeaccommodatediftheyarepreparedtousestrain-hardeningplasticitytheorywithintheiranalyses.TheadhocproceduresfordescribingfoundationbehaviorundercombinedloadinghavetheirrootsintheworkonbearingcapacitybyMeyerhof(1953),andaretypifiedbytheproceduresdescribedbyBrinchHansen(1970)andVesic(1973).Thesemethodsareadequateforpredictingfailureundercombinedloads,buttheyareunsuitablefornumericalanalysis,principallybecausetheyformulatetheproblemusingaseriesoffactorsappliedtothebearingcapacityformulaforverticalloading,modifyingittoaccountforhorizontalandmomentloading.Thisrenderstheanalysisunsuitablefordirectinclusioninnumericalanalysisprograms.Furthermoretheconventionalanalysespaynoattentiontotheissueofplasticstrainspre-failure,sincetheytreatonlythefailureproblem.Analternativeistoaddresstheproblemdirectlyasoneofloadingwithinathree-dimensional(V,M,H)loadspace,andtoexplore,forinstance,theshapeoftheyieldsurfaceinthisspace.ThisapproachwaspioneeredbyRoscoe&Schofield(1956),whowerealsoconcernedwithaproblemofsoilstructureinteraction:thatofcalculatingthefullyplasticmomentresistanceofashortpierfoundationforasteelframework.Thegeneralframeworkofplottingloadpathsin(V,M,H)spacehasbeenadoptedbytheoffshoreindustry,buttheformulaeusedtoderivethefailuresurfacesareoftenbasedontheshapeandinclinationfactorapproach(seee.g.Hambly&Nicholson,1991).Recentlytherehasbeenconsiderableinterestinthedevelopmentofmodelsbasedonplasticitytheory,andontheexperimentalworknecessarytosupportthisapproach(e.g.Schotmann,1989;Nova&Montrasio,1991:Gottardi&Butterfield,1993,1995;Houlsby&Martin,1992;Martin,1994).Themodeldescribedhereisintendedforthedescriptionofdrainedloadingofacircularfoundationondensesand,subjectedtoanarbitrarycombinationofvertical,horizontalandmomentloads.Itiscompleteinthesensethatanyloadordeformationpathcanbeappliedtothefootingandthecorrespondingunknowns(deformationsorloads)calculated.ThemodelisbasedonexperimentaldatabyGottardi&Houlsby(1995)andGottardietal.(1999).Theloadingofafootingclearlyresultsinacomplexstateofstressesinthesoil.Intheapproachusedheretheresponseofthefoundationis,however,expressedpurelyintermsofforceresultants(V,M,H)onthefooting.Thissimplificationisveryconvenient,especiallyasitallowsthemodeltobecoupleddirectlytoanumericalanalysisofastructure.Itisdirectlyanalogoustotheuseofforceresultants(tension,bendingmomentandshearforce)intheanalysisofbeamsandcolumns.However,itobscuressomeofthedetailedresponseofthefooting—forinstancethefactthatarealfootingprobablydoesnotexhibitatruly`elastic'responseofthesortemployedwithinthemodelforcertainloadcombinations.Nevertheless,itprovestobeausefulidealisation.OUTLINEOFTHEMODELBeforegivingthedetailedmathematicalformoftheexpressionsused(seethenextsection),itisworthdescribingthemodelinoutline.Theprincipalconceptadoptedisthatatanypenetrationofafoundationintothesoil,ayieldsurfacein(V,M,H)spacewillbeestablished.Anychangesofloadwithinthissurfacewillresultonlyinelasticdeformation.Loadpointsthattouchthesurfacecanalsoresultinplasticdeformation.Althoughtheshapeofthissurfaceisassumedconstant,thesizemayvary,withtheyieldsurfaceexpandingasthefootingispushedfurtherintothesoil.Forsimplicitytheexpansionoftheyieldsurfaceistakensolelyasafunctionoftheplasticcomponentoftheverticaldeformation.Themodelisthusoneofthestrain-hardeningplasticitytype.Thepreciseformofthehardeninglawisspecifiedbyarelationshipbetweenthesizeoftheyieldsurfaceandtheplasticverticaldeformation.Withintheyieldsurface,wherethedeformationisassumedaselastic,thebehaviourisspecifiedbyasetofelasticconstants.Finallyastatementmustbemadeabouttheflowrule,whichdeterminestheratiobetweentheplasticstrains.Thesimplesttypeofflowruleis‘associatedflow’,inwhichtheplasticpotentialisthesameastheyieldsurface.Inthismodelaslightvariationisusedinthattheshapeoftheyieldsurfaceandplasticpotentialaredescribedbysimilarmathematicalexpressionsbutwithdifferentparametervalues.Itisnecessarytointroducetheseparametersifthemodellingofplasticverticaldeformationsistobeatallreasonable.Thereisastrikinganalogybetweenthestructureoftheproposedmodelandthatofconstitutivemodelsbasedoncritical-stateconcepts.Intheanalogytheverticalloadplaysthesameroleasthemeannormalstress,p’,thehorizontalloadorthemomentareequivalenttodeviatorstress,q,andtheverticalpenetrationplaysthesamerole(withachangeofsign)asthevoidsratioorspecificvolume.TheanalogyispursuedinmoredetailbyHoulsby&Martin(1992)andMartin(1994).DETAILSOFTHEMODELThemodeldescribedhereisknownasModelC(ModelsAandBweredevelopedbyMartin(1994)forfootingsonclay).ThesignconventionsandnomenclatureusedinthefollowingarethosesuggestedbyButterfieldetal.(1997)andareshowninFig.1.TypicalparametervaluesforModelCarepresentedinTable1. Fig.1.Signconventionsforloadanddisplacement. Fig.2.ShapeofyieldsurfaceTable1. PropertiesusedinModelCConstantdimensionExplanationConstrainsTypicalvalueNotesRLFootingradiusVariousγF/L3Unitweightofsoil20kN/m3gShearmodulusfactor400Forequation(2)kvElasticstiffnessfactor(vertical)2.65khElasticstiffnessfactor(horizontal)2.3kmElasticstiffnessfactor(moment)0.46kcElasticstiffnessfactor(horizontal/momentcoupling)-0.14h0Dimensionofyieldsurface(horizontal)0.116MaximumvalueofH/V0onM=0m0Dimensionofyieldsurface(moment)0.086MaximumvalueofM/2RV0onH=0αEccentricityofyieldsurface1.0<α<1.0-0.2β1Curvaturefactorforyieldsurface(lowstress)≦1.00.9β1=β2=1givesparabolicsectionβ2Curvaturefactorforyieldsurface(highstress)≦1.00.99β1=β2=1givesparabolicsectionβ3Curvaturefactorforplasticpotential(lowstress)≦1.00.55β4Curvaturefactorforplasticpotential(highstress)≦1.00.65αhAssociationfactor(horizontal)1.0-2.5Variationaccordingtoequation(9)andαh∞=2.5αmAssociationfactor(moment)1.0-2.15Variationaccordingtoequation(9)andαm∞=2.15k'Rateofchangeinassociationfactors0.125fInitialplasticstiffnessfactor0.144NγBearingcapacityfactor(peak)150-300δpDimensionlessplasticpenetrationatpeak0.0136ElasticbehaviourTheelasticrelationshipbetweentheincrementsofload(dV,dM,dH)andthecorrespondingelasticdisplacements(dwe,dθe,due)is dVdMwhereRistheradiusofthefooting,Gisarepresentativeshearmodulus,andkv,km,kh,kcaredimensionlessconstants.Thevaluesoftheseconstantsmaybederivedusing,forinstance,finiteelementanalysisofafooting(Bell,1991;NgoTran,1996),andtypicalvaluesaregiveninTable1.Thevaluesofthedimensionlessconstantsdependonthegeometryofthefooting(e.g.coneangleanddepthofembedment)aswellasthePoisson'sratioforthesand.AnappropriatevalueofGisoneofthemostdifficultparameterstoestablishforthemodel.Recognisingthatthemobilisedshearstiffnessisstronglydependentontheshearstrain,thevaluehastobeacompromiseonethatisrepresentativeoftypicalstrainsinthesoil.Ithasbeendeterminedherebyfittingofoverallcurvestoexperimentaldata.Theshearmodulusalsodependsonstresslevel,andistypicallyproportionaltoapproximatelythesquarerootofthemeaneffectivestress.Itisconvenientthereforetoestimatetheshearmodulusthroughuseofaformulasuchas GPwherePaisatmosphericpressure,Visarepresentativeverticalloadonthefoundation,A=πr2istheplanareaofthefoundation,andgisadimensionlessconstant.Atypicalvalueofgisapproximately400formediumdensesand,butwouldbeexpectedtodependmildlyontherelativedensity.Notethatequation(2)representsadifferentscalingrelationshipthanwasusedinCassidy(1999),andissuggestedonthebasisofmorerecentwork.YieldsurfaceTheyieldsurfaceismostconvenientlyexpressedindimensionlessterms,usingthevariablesv=V/V0,m=M/2RV0,h=H/V0,whereV0istheparameterthatdefinesthesizeoftheyieldsurface.ThechosenformofthesurfacethatfitstheobservedbehaviouroffootingswellisthatusedbyMartin(1994): f=hwherethefactorβisintroducedsothath0andm0havesimplephysicalinterpretations.Thissurfacemayseemunnecessarilycomplicated,anditisperhapsusefultoconsiderasimplifiedforminwhicha=0andβ1=β2=1: f=hh0Itisstraightforwardtoshowthatthisisa‘rugbyball’shapedsurfacethatisellipticalinsectiononplanesatconstantV,andparaboliconanysectionincludingtheV-axis:seeFig.2.Althoughthereissometheoreticaljustificationforthischoiceofshape(particularlyinthe(V,M)plane),itislargelychosenempirically.ThesizeofthesurfaceisdeterminedbythepointonthesurfaceatmaximumVvalue,whichisgivenby(V,M,H)=(V0,0,0).Theshapeofthesurfaceisdeterminedbythetwoparametersh0andm0,whichdeterminetheratiosofH/VandM/2RVatthewidestsectionofthesurface,whichoccursatV=V0/2.Thefactorainequation(3)allowstheellipsetobecomeeccentric(thatis,theprincipalaxesarenolongeralignedwiththeH-andM-axes).Thisisnecessaryforaccuratemodelingoftheexperimentaldata,andaccountsforthefactthatif,forinstance,thefootingissubjectedtoahorizontalloadfromlefttoright,aclockwisemomentwillproduceadifferentresponsefromananticlockwisemoment.Thefactorsβ1andβ2areintroducedfollowingNova&Montrasio(1991).Theyhavetwoadvantages:(a)thepositionofthemaximumsizeoftheellipticalsectioncanbemovedfromV=V0/2toV=β2V0/(β1+β2),thusfittingexperimentaldatabetter;and(b)bychoosingβ1﹤1andβ2﹤1thesharppointsonthesurfaceatV=0andV=V0canbeeliminated,whichhasadvantagesinthenumericalimplementationofthemodel.Ifβ1=β2=0.5,theyieldsurfacebecomesanellipsoid.Thefactorβ12inequation(3)issimplysothath0andm0retaintheiroriginalmeanings.StrainhardeningTheformofthestrain-hardeningexpressioncanbedeterminedfromaverticalload-penetrationcurve,sinceforpureverticalloadingV0=V.Typicalload-penetrationcurvesareshowninFig.3,showingapeakintheload-penetrationcurveforthedensesandtestedbyGottardi&Houlsby(1995).Anexpressionthatfittsthedatawell,andwhichisshowninFig.3,is V0wherekisaninitialplasticstiffness,wpistheplasticcomponentoftheverticalpenetration,V0misthepeakvalueofV0,andwpmisthevalueofwpatthispeak.Nospecialsignificanceisattachedtothisparticularformofthefittotheverticalload-penetrationresponse,andalternativeexpressionsthatfittedotherexperimentaldatacouldalsobeappropriate.Aformulathatmodelspost-peakworksofteningaswellaspre-peakperformancewasessential.However,equation(5)unrealisticallyimpliesV0→0aswp→∞.Thereforeitcanbeusedonlyforalimitedrangeofpenetrations.Itisassumedthatformostproperlydesignedfoundationsondensesand,loadingpost-peakwouldnotbeexpected;however,foracompletemodelcapableoffittingpost-peakbehaviourmorerealistically,equation(5)canbealteredto V0wherefpisadimensionlessconstantthatdescribesthelimitingmagnitudeofverticalloadasaproportionofV0m(thatis,V0→fpV0maswp→∞).Itispossibletousethesameparametricvaluesofk,V0mandwpmasinequation(5).Forrealisticfootingdesignsinwhichitwasnotrequiredtodescribesoftening,amuchsimplerequationthanequation(6)couldbeused.Thepreciseformofthisequationisnotinfactcentraltothemodel;allthatisrequiredisaconvenientexpressionthatfitsobserveddataanddefinesV0asafunctionofwp.Fig.3.TheoreticalfitoftheverticalloadtestsPlasticpotentialInthe(M/2R,H)planeanassociatedflowruleisfoundtomodeltheratiosbetweentheplasticdisplacementswell,butthisisnotthecaseinthe(V,M/2R)or(V,H)planes,forwhichanassociatedflowruleisfoundtopredictunrealisticallylargeverticaldisplacements.Aplasticpotentialdifferentfromtheyieldsurfacemustthereforebespecified.Aconvenientexpressionis,however,verysimilartothatusedfortheyieldsurface: g=hWhereβandαvisanassociationparameter(associatedflowisgivenbyαv=1.0).Notethattheconditiong=0isusedtodefineadummyparameterV0’whichgivestheintersectionoftheplasticpotentialwiththeV-axis.Theprimedparametersaredefinedbyv’=V/V0’,m’=M/2RV0’andh’=H/V0’.Factorsβ3andβ4havebeenintroduced,whichcanbechosenindependentlyfromβ1andβ2.Theassociationparameterαvallowsforvariationoftheverticaldisplacementmagnitude,withvaluesgreaterthan1.0resultingintheincreaseoftheverticaldisplacements.Italsocontrolsthepositionofthe‘parallelpoint’asdefinedbyTan(1990),whichisthepointontheyieldlocusatwhichthefootingcouldrotate(ormovesideways)atconstantverticalloadandwithnofurtherverticaldeformation.Accuratepredictionofthispointisimportantasitdescribesthetransitionbetweensettlementandheaveofthefootingandwhereslidingfailureswilloccur.Intheanalogywithcritical-statemodels,thispointplaysthesameroleasthecriticalstate.Whenassociatedflowisused(αv=1,β3=β1,β4=β2)theparallelpointoccursatv=β2/(β1+β2):thatis,thelargestconstantverticalloadsectionoftheyieldsurface.Asαvisdecreased,thepositionoftheparallelpointmovestoalowervalueofverticalload,buttheexactexpressionforthevalueofvbecomesverycomplex.Themodellingofrealisticverticaldisplacementsandofthepositionoftheparallelpointarelinked,andwithonlyoneparameteritisdifficulttomodelbothadequately.Increasingh0orm0withtwoassociationfactors,ratherthanscalingtheverticalcomponent,enablestheplasticpotential'sshapetochangeintheradialplane.Thisconsequentlychangesradialplasticdisplacements.Thismethodhastheadvantageofmoreflexibilityinmodellingsubtledifferencesbetweenhorizontalandmomentloadingresults.Usingtwoassociationfactorstheplasticpotentialmaybedefinedas g=hIfαhandαmareconstantandequal,equation(7)isequivalenttoequation(8)forthesamevalueofαv.Infactitwasfoundthatexperimentaldatacanbefittedwellonlyiftheαhandαmfactorsarethemselvestakenasvariable.ThevaluesofαhandαmthatbestfitboththeradialdisplacementandconstantVtestsofGottardi&Houlsby(1995)werefoundtobehyperbolicfunctionsofplasticdisplacementhistories: αh αm=wherek’determinestherateofchangeoftheassociationfactors.Fornopreviousradialdisplacements,αhandαmequateto1andassociatedflowisassumed.TheratesatwhichαhandαmvaryinModelCaredepictedinFig.4.Withtheplasticpotentialdefinedasinequation(6),thefollowingvalueswereevaluated:β3=0.55;β4=0.65;αh∞=2.5;αm∞=2.15;k’=0.125.Furtherdetailsofthedevelopmentoftheplasticpotentialinequation(8)andcomparisonsbetweenthetheoryandexperimentaldatacanbefoundinCassidy(1999).PartiallydrainedbehaviourThemodeldescribedaboveisbasedondatafromtestsondrysand,andthusdescribesfullydrainedbehaviour.Forrealisticloadingtimesoflargeoffshorefoundations,partiallydrainedbehaviourisexpected,andtheabovemodelwouldneedtobemodifiedtotakeintoaccountthetransientporepressuresbeneaththefoundation.BothMangal(1999)andByrne(2000)havecarriedoutmodeltestsequivalenttothoseusedhere,butonsaturatedsandandatloadingrateswherepartiallydrainedbehaviouroccurs.Theyrecordthatloadingratehasremarkablylittleeffectontheload-deformationresponse,sothatthecurrentmodelprovidesareasonablestartingpointfordescriptionofpartiallydrainedbehaviour.Somecautionisofcoursenecessaryifthereisanypossibilitythatthemagnitudeofthetransientporepressuresmightbesufficienttoinduceliquefactionphenomena.Fig.4.RatesofvariationofαhandαminModelCRETROSPECTIVEMODELLINGOFEXPERIMENTSToinvestigatethecapabilitiesofModelCtomodelfootingbehaviour,numericalsimulationswerecarriedoutforanumberofrepresentativeexperiments.Ineachofthesesimulationsthemeasuredvaluesofthreeofthemeasuredquantities(e.g.thedisplacements)weretakenasinput,andtheotherthreequantities(e.g.theloads)werecalculatedasoutputforcomparisonwiththeexperiments.Noidealisationoftheexperimentalinputdatawascarriedout,sothattheinputvaluescontainalltheminorfluctuationsassociatedwithexperimentalmeasurements.TheprogramusedtoimplementModelCisabletohandlesuchperturbations.ThesimulationsarecarriedoutforthetestsreportedbyGottardi&Houlsby(1995),usinga100mmdiameterfootingonmediumdenseLeightonBuzzardsand.ThesearethesameteststhatwereusedforthedevelopmentofModelC,sothatthequalityofthefitisofcourseexpectedtobegood.Thepurposeofthisexerciseis,however,twofold:(a)todemonstratethatModelCcanbeimplementednumerically,andusedtosimulatefootingbehaviour;and(b)toassesstheoverallcapabilityofthemodeltocapturethesalientfeaturesoftheoriginaldata.VerticalpenetrationtestFigure5(a)showstheexperimentalresultsforaverticalpenetrationtest.Fig.5(b)isasimulationofthissametestinwhichthemeasureddisplacementistakenasinput,andtheverticalloadcalculated.ModelCgivesloadsthataccuratelyrepresenttheoriginaltest,andthisisprincipallyatestofthechosenstrain-hardeninglaw.Thethreeverticalunload/reloadloopspre-peakaremodelledwell,althoughModelCdoesnotreflectthehysteresisthatoccursintheexperimentalresults.Thisdoesmakeaslight,butnottoosignificant,reductioninthedisplacementscomparedwiththeircorrespondingloads.TheModelCprogrampredictsthelocationoftheexistingyieldsurfacewhenbeingreloadedinanunload-reloadloop.Itdoesnotovershoottheyieldsurfacebecauseofabisectionalgorithmusedtodeterminetheproportionoftheincrementthatiselastic,withtheremainingproportionallocatedaselastoplastic.IneachofFigs6—Fig.11following,(a)and(b)representthemeasuredexperimentaldata,and(c)and(d)representtheModelCsimulation.MomentandhorizontalswipetestsfromV≈1600NInaswipetestthefootingisload-controlledintheverticaldirectionuntilitreachesaprescribedload,inthiscaseV≈1600N.Rotationorhorizontaldisplacementisthenappliedtothefootingwiththetracecorrespondingtoatrackalongtheyieldsurface,appropriateforthatembedment.Figure6representsamomentswipestartingatV≈1600N.Priortotheswipethefootingisloadedinthepurelyverticaldirectionwithonlysmallamountsofhorizontalandmomentloadbeingdeveloped.However,forclarity,onlytheswipehasbeenplotted.ModelCsimulatesthemagnitudeofpeakmomentadequately,reachingavaluejustoverM/2R=150N.ThenumericalpeakmomentinFig.6(d)andtheexperimentalpeakmomentinFig.6(b)occurredatthesameverticalload.Additionally,Figs6(a)and(c)showthattheamountofrotationbeforethepeakwasmodelledaccurately.However,inthistestModelClocatesthe`parallelpoint'slightlylowerthantheexperiment(pointAinFig.6(d)).IntheModelCsimulationinFig.6(d)movementbackalongtheyieldsurfacecanbeseentooccur,forinstanceatV≈800NandagainatV≈600N.Figure7representsanequivalentswipe,butinthehorizontaldirection,withModelCload-controlledtoV≈1600Nandthendisplacement-controlledfortheswipe.Theprogrammodelsthetrackalongtheyieldsurfaceverywell,withthepeakhorizontalloadalmostexactlymatchingthatoftheexperimentatjustover200N.Fig.7(c)showsModelCpredictingaverysimilardisplacementpathtotheexperiments(Fig.7(a)),verifyingtheflowruleforthiscase.Thesimulationstopstrackingataroundthesamehorizontalandverticalloadlevels,indicatingaccuratepredictionofthe‘parallelpoint’inthehorizontalplane.Furtherjustificationoftheuseoftwoindependentassociationfactors(αhandαm)intheflowru
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學大一(計算機應用技術)數(shù)據(jù)庫開發(fā)技術實務階段測試題
- 2025年高職(野生動植物資源保護與利用)珍稀動物保護試題及答案
- 2026年面包制作(全麥面包烘焙)試題及答案
- 2025年中職灌溉與排水技術(灌溉排水操作)試題及答案
- 2025年中職旅游服務(導游實訓實操)試題及答案
- 2025年高職汽車電子技術(汽車電器維修)試題及答案
- 2026年環(huán)境工程(污水處理技術)試題及答案
- 2025年大學醫(yī)學信息學(醫(yī)學信息)試題及答案
- 2025年高職哲學(西方哲學概論)試題及答案
- 2025年高職(烹飪工藝與營養(yǎng))烹飪原料學階段測試題及答案
- DB11∕T 637-2024 房屋結構綜合安全性鑒定標準
- 2025年新疆中考數(shù)學真題試卷及答案
- 2025屆新疆烏魯木齊市高三下學期三模英語試題(解析版)
- DB3210T1036-2019 補充耕地快速培肥技術規(guī)程
- 混動能量管理與電池熱管理的協(xié)同優(yōu)化-洞察闡釋
- T-CPI 11029-2024 核桃殼濾料標準規(guī)范
- 統(tǒng)編版語文三年級下冊整本書閱讀《中國古代寓言》推進課公開課一等獎創(chuàng)新教學設計
- 《顧客感知價值對綠色酒店消費意愿的影響實證研究-以三亞S酒店為例(附問卷)15000字(論文)》
- 勞動仲裁申請書電子版模板
- 趙然尊:胸痛中心時鐘統(tǒng)一、時間節(jié)點定義與時間管理
- 家用燃氣灶結構、工作原理、配件介紹、常見故障處理
評論
0/150
提交評論