內蒙古自治區(qū)包頭市二中2025年高三5月質量檢測試題(A卷)數(shù)學試題文試題含解析_第1頁
內蒙古自治區(qū)包頭市二中2025年高三5月質量檢測試題(A卷)數(shù)學試題文試題含解析_第2頁
內蒙古自治區(qū)包頭市二中2025年高三5月質量檢測試題(A卷)數(shù)學試題文試題含解析_第3頁
內蒙古自治區(qū)包頭市二中2025年高三5月質量檢測試題(A卷)數(shù)學試題文試題含解析_第4頁
內蒙古自治區(qū)包頭市二中2025年高三5月質量檢測試題(A卷)數(shù)學試題文試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古自治區(qū)包頭市二中2025年高三5月質量檢測試題(A卷)數(shù)學試題文試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,,則()A. B. C. D.2.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.43.函數(shù)的部分圖象大致為()A. B.C. D.4.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.605.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.6.已知函數(shù),且的圖象經過第一、二、四象限,則,,的大小關系為()A. B.C. D.7.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個8.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.9.的展開式中有理項有()A.項 B.項 C.項 D.項10.已知向量,,,若,則()A. B. C. D.11.函數(shù)的單調遞增區(qū)間是()A. B. C. D.12.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(shù)(為虛數(shù)單位)為純虛數(shù),則實數(shù)的值為_____.14.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.15.設實數(shù),若函數(shù)的最大值為,則實數(shù)的最大值為______.16.設數(shù)列為等差數(shù)列,其前項和為,已知,,若對任意都有成立,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)當時,證明:;(2)設直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.18.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.19.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.20.(12分)近年空氣質量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院人進行了問卷調查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進行問卷調查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)21.(12分)已知函數(shù),.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當時,的最大值為,求證:.22.(10分)已知函數(shù).當時,求不等式的解集;,,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性比較大小,屬于基礎題.2.A【解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.3.B【解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況?!驹斀狻?,故奇函數(shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。4.D【解析】

先設A點的坐標為,根據(jù)對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據(jù)對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數(shù)形結合思想,以及化歸與轉化思想的應用.5.C【解析】

求得點坐標,由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設,則直線的方程為,由,解得,所以.故選:C本小題主要考查拋物線的弦長的求法,屬于基礎題.6.C【解析】

根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調遞減,在上單調遞增,又因為,所以,又,,則|,即,所以.故選:C.本題考查利用函數(shù)的單調性比較大小,還考查化簡能力和轉化思想.7.B【解析】

由題意,結合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關鍵,著重考查了推理與運算能力.8.D【解析】由題意得,函數(shù)點定義域為且,所以定義域關于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關于原點對稱,故選D.9.B【解析】

由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.10.A【解析】

根據(jù)向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:本題考查根據(jù)向量平行關系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.11.D【解析】

利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調性,并采用整體法,可得結果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當時,增區(qū)間的一個子集為.故選D.本題考查了輔助角公式,考查正弦型函數(shù)的單調遞增區(qū)間,重點在于把握正弦函數(shù)的單調性,同時對于整體法的應用,使問題化繁為簡,難度較易.12.C【解析】

利用基本初等函數(shù)的單調性判斷各選項中函數(shù)在區(qū)間上的單調性,進而可得出結果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.本題考查函數(shù)在區(qū)間上單調性的判斷,熟悉一些常見的基本初等函數(shù)的單調性是判斷的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用復數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復數(shù)為純虛數(shù),解得.故答案為:.本題主要考查了根據(jù)復數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎題.14.2【解析】

根據(jù)遞推公式可考慮分析,再累加求出關于關于參數(shù)的關系,根據(jù)表達式的取值分析出,再用數(shù)學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數(shù)均有.所以.當時,證明:對任意的正整數(shù)都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數(shù)學歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結合參數(shù)的范圍問題進行分析.屬于難題.15.【解析】

根據(jù),則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數(shù)法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:本題主要考查導數(shù)在函數(shù)中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.16.【解析】

由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質求出的最大值及其對應的值,即可得解.【詳解】設等差數(shù)列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.本題考查等差數(shù)列前項和最值的計算,一般利用二次函數(shù)的基本性質求解,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)令,求導,可知單調遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點處的切線的方程①,再設直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據(jù),轉化為,,令,轉化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設,則,單調遞增,且,,因而在上存在零點,且在上單調遞減,在上單調遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當時,為單調遞增函數(shù),且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調遞增函數(shù),,所以;因為為單調遞增函數(shù),且,因此;因為為整數(shù),且,所以.本題主要考查導數(shù)在函數(shù)中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.18.(1)(2)最大值.【解析】

(1)根據(jù)通徑和即可求(2)設直線方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設直線的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當且僅當,即時取得等號,即四邊形面積的最大值.考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.19.(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數(shù)的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設:證明:x+y-2xy==令,∴原式====當時,20.(1)列聯(lián)表見解析,有的把握認為患心肺疾病與性別有關,理由見解析;(2).【解析】

(1)結合題意完善列聯(lián)表,計算出的觀測值,對照臨界值表可得出結論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補充如下:患心肺疾病不患心肺疾病合計男女合計.故有的把握認為患心肺疾病與性別有關;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:、、、、、、、、、.其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、、、,所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.本題考查利用獨立性檢驗的基本思想解決實際問題,同時也考查了利用列舉法求解古典概型的概率問題,考查計算能力,屬于中等題.21.(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調遞增.則函數(shù)在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,由的單調性可得在上的最小值是(iii)當,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論