湖南省長沙市麓山國際實(shí)驗(yàn)學(xué)校2025年高三下學(xué)期學(xué)前考試數(shù)學(xué)試題文試題_第1頁
湖南省長沙市麓山國際實(shí)驗(yàn)學(xué)校2025年高三下學(xué)期學(xué)前考試數(shù)學(xué)試題文試題_第2頁
湖南省長沙市麓山國際實(shí)驗(yàn)學(xué)校2025年高三下學(xué)期學(xué)前考試數(shù)學(xué)試題文試題_第3頁
湖南省長沙市麓山國際實(shí)驗(yàn)學(xué)校2025年高三下學(xué)期學(xué)前考試數(shù)學(xué)試題文試題_第4頁
湖南省長沙市麓山國際實(shí)驗(yàn)學(xué)校2025年高三下學(xué)期學(xué)前考試數(shù)學(xué)試題文試題_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省長沙市麓山國際實(shí)驗(yàn)學(xué)校2025年高三下學(xué)期學(xué)前考試數(shù)學(xué)試題文試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若集合,,則=()A. B. C. D.2.在中,,則()A. B. C. D.3.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.4.已知角的終邊經(jīng)過點(diǎn),則A. B.C. D.5.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.1806.已知雙曲線的左、右焦點(diǎn)分別為、,拋物線與雙曲線有相同的焦點(diǎn).設(shè)為拋物線與雙曲線的一個交點(diǎn),且,則雙曲線的離心率為()A.或 B.或 C.或 D.或7.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.38.若復(fù)數(shù),則()A. B. C. D.209.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點(diǎn)落在回歸直線上B.若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)10.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.112.已知過點(diǎn)且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________14.已知實(shí)數(shù)滿足,則的最大值為________.15.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),己知A(3,1),B(-1,3),若點(diǎn)C滿足,其中α,β∈R,且α+β=1,則點(diǎn)C的軌跡方程為16.過動點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點(diǎn),(1)求的取值范圍;(2)設(shè)四邊形的面積為,當(dāng)最大時,求直線與直線的交點(diǎn)的坐標(biāo).18.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。19.(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點(diǎn),求;(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】試題分析:化簡集合故選C.考點(diǎn):集合的運(yùn)算.2.A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)椋裕蔬xA.【點(diǎn)睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.3.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.4.D【解析】因?yàn)榻堑慕K邊經(jīng)過點(diǎn),所以,則,即.故選D.5.A【解析】

因?yàn)椋傻?,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.6.D【解析】

設(shè),,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率.【詳解】過分別向軸和拋物線的準(zhǔn)線作垂線,垂足分別為、,不妨設(shè),,則,為雙曲線上的點(diǎn),則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點(diǎn)睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質(zhì),考查運(yùn)算求解能力,屬于中檔題.7.C【解析】

先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8.B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計算能力.9.D【解析】

對每一個選項(xiàng)逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上﹐故A錯誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【點(diǎn)睛】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.10.A【解析】

結(jié)合向量垂直的坐標(biāo)表示,將兩個條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識.11.A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學(xué)生的計算能力.12.C【解析】

設(shè)切點(diǎn)為,則,由于直線經(jīng)過點(diǎn),可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)處的切線斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線與曲線切于點(diǎn),則,又∵,∴,∴,解得,,∴過點(diǎn)與曲線相切的直線方程為或,故選C.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.0.35【解析】

根據(jù)對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點(diǎn)睛】本題考查了求互斥事件與對立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.14.【解析】

作出不等式組所表示的平面區(qū)域,將目標(biāo)函數(shù)看作點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,代入點(diǎn)A的坐標(biāo)可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點(diǎn),目標(biāo)函數(shù)表示點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點(diǎn)睛】本題考查求目標(biāo)函數(shù)的最值,關(guān)鍵在于明確目標(biāo)函數(shù)的幾何意義,屬于中檔題.15.【解析】

根據(jù)向量共線定理得A,B,C三點(diǎn)共線,再根據(jù)點(diǎn)斜式得結(jié)果【詳解】因?yàn)?且α+β=1,所以A,B,C三點(diǎn)共線,因此點(diǎn)C的軌跡為直線AB:【點(diǎn)睛】本題考查向量共線定理以及直線點(diǎn)斜式方程,考查基本分析求解能力,屬中檔題.16.【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)點(diǎn)的坐標(biāo)為【解析】

將拋物線方程與圓方程聯(lián)立,消去得到關(guān)于的一元二次方程,拋物線與圓有四個交點(diǎn)需滿足關(guān)于的一元二次方程在上有兩個不等的實(shí)數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.不妨設(shè)拋物線與圓的四個交點(diǎn)坐標(biāo)為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點(diǎn)坐標(biāo),再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達(dá)式,令,由及知,對關(guān)于的面積函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性和最值,即可求出四邊形的面積取得最大值時的值,進(jìn)而求出點(diǎn)坐標(biāo).【詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實(shí)數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設(shè)方程的兩個根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯(lián)立方程可得,點(diǎn)的坐標(biāo)為,因?yàn)樗倪呅螢榈妊菪?所以,令,則,所以,因?yàn)?所以當(dāng)時,;當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,即當(dāng)時,四邊形的面積取得最大值,因?yàn)?點(diǎn)的坐標(biāo)為,所以當(dāng)四邊形的面積取得最大值時,點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值與最值、拋物線及其標(biāo)準(zhǔn)方程及直線與圓錐曲線相關(guān)的最值問題;考查運(yùn)算求解能力、轉(zhuǎn)化與化歸能力和知識的綜合運(yùn)用能力;利用函數(shù)的思想求圓錐曲線中面積的最值是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18.(1)l的普通方程;C的直角坐標(biāo)方程;(2).【解析】

(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標(biāo)方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【點(diǎn)睛】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵.19.(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【解析】

(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點(diǎn)存在性定理判斷出有唯一零點(diǎn).(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過證明,證得成立.【詳解】(1)∵函數(shù)的定義域?yàn)?,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個零點(diǎn):∵,所以函數(shù)在區(qū)間內(nèi)有零點(diǎn),∵,函數(shù)在區(qū)間上沒有零點(diǎn),故函數(shù)只有一個零點(diǎn).(2)證明:函數(shù),則當(dāng)時,,不符合題意;當(dāng)時,令,則,所以在上單調(diào)增函數(shù),而,又∵區(qū)間上不單調(diào),所以存在,使得在上有一個零點(diǎn),即,所以,且,即兩邊取自然對數(shù),得即,要證,即證,先證明:,令,則∴在上單調(diào)遞增,即,∴①在①中令,∴令∴,即即,∴.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和零點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20.(Ⅰ)6(Ⅱ)【解析】

(Ⅰ)化簡得到直線的普通方程化為,,是以點(diǎn)為圓心,為半徑的圓,利用垂徑定理計算得到答案.(Ⅱ)設(shè),則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點(diǎn)為圓心,為半徑的圓,設(shè)點(diǎn)到直線的距離為,則,所以.(Ⅱ)的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),,因?yàn)?,所以,所?【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計算能力和應(yīng)用能力.21.(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點(diǎn)M,連接ME,證明;(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.因?yàn)槠矫妫矫妫云矫妫á颍┮驗(yàn)槠矫鍭BC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)闉檎切危?,又平面平面,平面平面,所以平面ABC.所以點(diǎn)到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點(diǎn)睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論