下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共1頁三門峽社會(huì)管理職業(yè)學(xué)院
《數(shù)據(jù)挖掘與可視化》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的生存分析常用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者接受某種治療后疾病復(fù)發(fā)的時(shí)間,以下哪個(gè)概念是生存分析中的關(guān)鍵指標(biāo)?()A.生存函數(shù)B.風(fēng)險(xiǎn)函數(shù)C.中位生存時(shí)間D.以上都是2、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級(jí)的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測(cè)C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識(shí),對(duì)于普通用戶來說難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無誤的,可以直接用于決策3、假設(shè)要分析消費(fèi)者對(duì)新產(chǎn)品的反饋意見,以下關(guān)于意見分析方法的描述,正確的是:()A.人工閱讀所有反饋意見,憑主觀判斷總結(jié)主要觀點(diǎn)B.利用自然語言處理技術(shù)對(duì)反饋進(jìn)行分類和情感分析C.只關(guān)注反饋中的負(fù)面意見,忽略正面意見D.對(duì)于模糊不清的反饋意見,直接忽略不計(jì)4、在數(shù)據(jù)分析項(xiàng)目中,需要對(duì)兩個(gè)不同來源的數(shù)據(jù)集進(jìn)行整合和融合,例如一個(gè)是銷售數(shù)據(jù),另一個(gè)是客戶信息數(shù)據(jù)。由于兩個(gè)數(shù)據(jù)集的格式和字段可能不一致,以下哪種方法可能有助于順利完成數(shù)據(jù)整合?()A.手動(dòng)匹配和轉(zhuǎn)換B.使用數(shù)據(jù)清洗工具C.建立數(shù)據(jù)倉(cāng)庫(kù)D.以上都是5、在進(jìn)行數(shù)據(jù)分類任務(wù)時(shí),需要選擇合適的分類算法。假設(shè)要對(duì)一組醫(yī)學(xué)圖像進(jìn)行疾病分類,圖像特征復(fù)雜且類別不均衡。以下哪種分類算法在處理這種具有挑戰(zhàn)性的分類問題時(shí)可能表現(xiàn)更好?()A.支持向量機(jī)B.隨機(jī)森林C.樸素貝葉斯D.K最近鄰算法6、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(某一類別的樣本數(shù)量遠(yuǎn)多于其他類別),以下哪種處理方法可能會(huì)提高模型性能?()A.過采樣B.欠采樣C.生成對(duì)抗網(wǎng)絡(luò)D.以上都是7、在數(shù)據(jù)庫(kù)中,若要對(duì)數(shù)據(jù)進(jìn)行分組統(tǒng)計(jì),以下哪個(gè)關(guān)鍵字通常會(huì)被使用?()A.GROUPBYB.ORDERBYC.WHERED.HAVING8、假設(shè)要分析某公司產(chǎn)品在不同市場(chǎng)的銷售趨勢(shì),同時(shí)考慮市場(chǎng)的競(jìng)爭(zhēng)情況和宏觀經(jīng)濟(jì)環(huán)境,以下哪種分析方法較為綜合?()A.情景分析B.敏感性分析C.蒙特卡羅模擬D.以上都不是9、在數(shù)據(jù)分析中,數(shù)據(jù)可視化是一種重要的手段。以下關(guān)于數(shù)據(jù)可視化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以通過圖表、圖形等形式展示數(shù)據(jù)的特征和趨勢(shì)C.數(shù)據(jù)可視化只適用于大型數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集沒有太大作用D.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性10、數(shù)據(jù)分析在當(dāng)今的各個(gè)領(lǐng)域都發(fā)揮著重要作用。在數(shù)據(jù)收集階段,以下關(guān)于數(shù)據(jù)質(zhì)量的描述,不準(zhǔn)確的是()A.數(shù)據(jù)質(zhì)量包括準(zhǔn)確性、完整性、一致性和時(shí)效性等多個(gè)方面B.高質(zhì)量的數(shù)據(jù)能夠?yàn)楹罄m(xù)的分析提供可靠的基礎(chǔ),確保分析結(jié)果的有效性C.數(shù)據(jù)收集時(shí)只需要關(guān)注數(shù)據(jù)的數(shù)量,質(zhì)量問題可以在后續(xù)的分析中進(jìn)行處理和修正D.為了保證數(shù)據(jù)質(zhì)量,需要在收集過程中制定明確的數(shù)據(jù)標(biāo)準(zhǔn)和規(guī)范,并進(jìn)行有效的數(shù)據(jù)驗(yàn)證11、數(shù)據(jù)分析中的文本分析用于處理非結(jié)構(gòu)化的文本數(shù)據(jù)。假設(shè)要從大量的客戶評(píng)論中提取關(guān)鍵信息和情感傾向,以下關(guān)于文本分析方法的描述,正確的是:()A.僅使用簡(jiǎn)單的關(guān)鍵詞計(jì)數(shù),不考慮文本的語義和語境B.不進(jìn)行文本的預(yù)處理和清洗,直接應(yīng)用分析算法C.采用自然語言處理技術(shù),包括詞法分析、句法分析、情感分析等,對(duì)文本進(jìn)行預(yù)處理、特征提取和建模,以準(zhǔn)確理解和挖掘文本中的信息D.認(rèn)為文本分析結(jié)果一定準(zhǔn)確可靠,不需要人工驗(yàn)證和修正12、數(shù)據(jù)分析中的數(shù)據(jù)挖掘技術(shù)常用于發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和關(guān)系。假設(shè)要從一個(gè)大型電商網(wǎng)站的用戶購(gòu)買記錄中挖掘出用戶的購(gòu)買行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘算法在處理這種大規(guī)模交易數(shù)據(jù)時(shí)更有可能發(fā)現(xiàn)有價(jià)值的信息?()A.決策樹算法B.關(guān)聯(lián)規(guī)則挖掘算法C.聚類算法D.神經(jīng)網(wǎng)絡(luò)算法13、在進(jìn)行數(shù)據(jù)分析時(shí),若要檢驗(yàn)兩個(gè)總體的方差是否相等,應(yīng)使用哪種檢驗(yàn)方法?()A.F檢驗(yàn)B.t檢驗(yàn)C.卡方檢驗(yàn)D.秩和檢驗(yàn)14、在數(shù)據(jù)挖掘中,若要對(duì)圖像數(shù)據(jù)進(jìn)行分析,以下哪種技術(shù)可能會(huì)被用到?()A.深度學(xué)習(xí)B.決策樹C.關(guān)聯(lián)規(guī)則D.因子分析15、當(dāng)分析一個(gè)在線教育平臺(tái)的課程評(píng)價(jià)數(shù)據(jù),以評(píng)估教師的教學(xué)質(zhì)量和課程的效果??紤]到評(píng)價(jià)的主觀性和多樣性,以下哪種方式可能有助于更客觀地綜合評(píng)價(jià)?()A.計(jì)算平均值B.去除極端值后計(jì)算平均值C.采用眾數(shù)D.以上都是16、在進(jìn)行數(shù)據(jù)分析時(shí),如果想要了解數(shù)據(jù)的分布形態(tài),以下哪種統(tǒng)計(jì)圖形最適合?()A.直方圖B.折線圖C.餅圖D.散點(diǎn)圖17、對(duì)于數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘,假設(shè)要從超市的銷售數(shù)據(jù)中發(fā)現(xiàn)商品之間的購(gòu)買關(guān)聯(lián),例如哪些商品經(jīng)常一起被購(gòu)買。以下哪種關(guān)聯(lián)規(guī)則挖掘算法可能會(huì)產(chǎn)生更有價(jià)值的結(jié)果?()A.Apriori算法,基于頻繁項(xiàng)集挖掘B.FP-Growth算法,提高挖掘效率C.Eclat算法,基于垂直數(shù)據(jù)格式D.不進(jìn)行關(guān)聯(lián)規(guī)則挖掘,依靠直覺判斷商品關(guān)聯(lián)18、在進(jìn)行數(shù)據(jù)分析的實(shí)驗(yàn)時(shí),交叉驗(yàn)證是常用的評(píng)估模型穩(wěn)定性的方法。假設(shè)你在比較不同的分類算法,以下關(guān)于交叉驗(yàn)證策略的選擇,哪一項(xiàng)是最合理的?()A.簡(jiǎn)單隨機(jī)劃分?jǐn)?shù)據(jù)集,進(jìn)行多次訓(xùn)練和驗(yàn)證B.使用K折交叉驗(yàn)證,平均多個(gè)結(jié)果以獲得更可靠的評(píng)估C.采用留一法交叉驗(yàn)證,確保每個(gè)樣本都被用于驗(yàn)證D.不進(jìn)行交叉驗(yàn)證,只進(jìn)行一次訓(xùn)練和驗(yàn)證19、在處理時(shí)間序列數(shù)據(jù)時(shí),除了考慮趨勢(shì)和季節(jié)性,還需要考慮數(shù)據(jù)的隨機(jī)性。假設(shè)要使用一種方法來平滑時(shí)間序列數(shù)據(jù),同時(shí)保留數(shù)據(jù)的主要特征,以下哪種方法可能是合適的?()A.簡(jiǎn)單移動(dòng)平均B.加權(quán)移動(dòng)平均C.指數(shù)加權(quán)移動(dòng)平均D.以上方法都可以20、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具和技術(shù)有很多,其中Python是一種常用的編程語言。以下關(guān)于Python在數(shù)據(jù)可視化中的作用,錯(cuò)誤的是?()A.Python可以使用各種數(shù)據(jù)可視化庫(kù),如Matplotlib、Seaborn等,進(jìn)行數(shù)據(jù)可視化B.Python可以進(jìn)行數(shù)據(jù)的處理和分析,為數(shù)據(jù)可視化提供數(shù)據(jù)支持C.Python的數(shù)據(jù)可視化功能強(qiáng)大,可以制作各種復(fù)雜的圖表和圖形D.Python只適用于專業(yè)的數(shù)據(jù)分析師,對(duì)于非專業(yè)用戶來說難以掌握21、數(shù)據(jù)挖掘技術(shù)在發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面發(fā)揮著重要作用。假設(shè)我們要從電商網(wǎng)站的用戶購(gòu)買記錄中挖掘用戶的購(gòu)買行為模式。以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,幫助進(jìn)行商品推薦B.分類算法能夠根據(jù)已知的類別標(biāo)簽對(duì)新的數(shù)據(jù)進(jìn)行分類預(yù)測(cè)C.聚類分析將數(shù)據(jù)分為不同的組,但這些組必須事先定義好D.數(shù)據(jù)挖掘需要大量的數(shù)據(jù)和計(jì)算資源,同時(shí)結(jié)果需要進(jìn)一步的分析和驗(yàn)證22、在數(shù)據(jù)分析中,時(shí)間序列分析用于處理具有時(shí)間順序的數(shù)據(jù)。假設(shè)我們要分析股票價(jià)格的歷史數(shù)據(jù)。以下關(guān)于時(shí)間序列分析的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以使用移動(dòng)平均等方法對(duì)時(shí)間序列進(jìn)行平滑處理,去除噪聲B.自回歸模型(AR)和移動(dòng)平均模型(MA)可以用于預(yù)測(cè)時(shí)間序列的未來值C.時(shí)間序列數(shù)據(jù)一定是平穩(wěn)的,不需要進(jìn)行平穩(wěn)性檢驗(yàn)D.可以結(jié)合多種時(shí)間序列模型,提高預(yù)測(cè)的準(zhǔn)確性23、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對(duì)照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過控制混雜因素來推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來解決因果推斷中的內(nèi)生性問題24、假設(shè)要分析不同產(chǎn)品類別的市場(chǎng)份額及其變化趨勢(shì),以下關(guān)于市場(chǎng)份額分析的描述,正確的是:()A.只計(jì)算當(dāng)前的市場(chǎng)份額,不考慮歷史數(shù)據(jù)B.市場(chǎng)份額的變化趨勢(shì)可以通過簡(jiǎn)單的差值計(jì)算得出C.考慮競(jìng)爭(zhēng)對(duì)手的策略和市場(chǎng)動(dòng)態(tài)對(duì)市場(chǎng)份額的影響,進(jìn)行綜合分析D.市場(chǎng)份額分析只適用于成熟的市場(chǎng),對(duì)于新興市場(chǎng)沒有意義25、在數(shù)據(jù)分析中,數(shù)據(jù)隱私和安全是必須要考慮的問題。假設(shè)我們處理的是敏感的個(gè)人數(shù)據(jù)。以下關(guān)于數(shù)據(jù)隱私和安全的描述,哪一項(xiàng)是不正確的?()A.應(yīng)該采取加密、匿名化等技術(shù)手段保護(hù)數(shù)據(jù)的隱私B.遵守相關(guān)的法律法規(guī),如數(shù)據(jù)保護(hù)法、隱私政策等C.只要數(shù)據(jù)在內(nèi)部使用,就不需要考慮數(shù)據(jù)隱私和安全問題D.對(duì)數(shù)據(jù)的訪問和使用進(jìn)行嚴(yán)格的權(quán)限管理,防止數(shù)據(jù)泄露二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的緩慢變化維的處理方法,如直接覆蓋、添加新行等,并說明如何根據(jù)業(yè)務(wù)需求選擇合適的處理方式。2、(本題5分)解釋數(shù)據(jù)可視化中的動(dòng)態(tài)可視化,說明如何通過動(dòng)態(tài)效果展示數(shù)據(jù)隨時(shí)間或其他變量的變化,舉例說明其應(yīng)用場(chǎng)景。3、(本題5分)說明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的異常值檢測(cè)和修正?請(qǐng)闡述常見的檢測(cè)方法和修正策略,并舉例說明在工業(yè)生產(chǎn)數(shù)據(jù)中的應(yīng)用。4、(本題5分)解釋在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)的實(shí)時(shí)處理和離線處理的區(qū)別,說明各自的適用場(chǎng)景和常用技術(shù),并舉例說明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線烘焙教學(xué)平臺(tái)保存了教學(xué)視頻觀看數(shù)據(jù)、用戶實(shí)踐成果、課程改進(jìn)建議等。優(yōu)化教學(xué)內(nèi)容和互動(dòng)環(huán)節(jié)。2、(本題5分)某在線房產(chǎn)中介平臺(tái)積累了房源數(shù)據(jù)、客戶需求、成交情況等。提高房產(chǎn)交易的效率和客戶滿意度。3、(本題5分)一家烘焙店擁有銷售數(shù)據(jù)、顧客口味偏好、新品反饋等。研發(fā)新的烘焙產(chǎn)品,優(yōu)化店鋪經(jīng)營(yíng)策略。4、(本題5分)某農(nóng)產(chǎn)品電商平臺(tái)擁有農(nóng)產(chǎn)品銷售數(shù)據(jù)、產(chǎn)地信息、消費(fèi)者反饋等。研究農(nóng)產(chǎn)品的市場(chǎng)需求和質(zhì)量問題,保障供應(yīng)和提升品質(zhì)。5、(本題5分)一家在線旅游平臺(tái)的跟團(tuán)游產(chǎn)品數(shù)據(jù)包含行程安排、價(jià)格、出發(fā)地、游客評(píng)價(jià)等。探討不同行程安排和價(jià)格的跟團(tuán)游在不同出發(fā)地的受歡迎程度和游客評(píng)價(jià)。四、論述題(本大題共3個(gè)小題,共30分)1、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026湖南婁底市婦幼保健院公開招聘專業(yè)技術(shù)人員考試備考試題及答案解析
- 2026年榆林市第九幼兒園招聘考試備考試題及答案解析
- 2026江西吉安市新廬陵大數(shù)據(jù)有限公司面向社會(huì)招聘派遣員工4人考試備考題庫(kù)及答案解析
- 2026中國(guó)聯(lián)通甘孜州分公司招聘考試參考試題及答案解析
- 2026年樂平市公安局公開招聘留置看護(hù)勤務(wù)輔警【56人】考試參考試題及答案解析
- 2026云南玉溪市元江縣人民政府辦公室編外人員招聘2人考試備考題庫(kù)及答案解析
- 2026年瑞麗市勐卯街道衛(wèi)生院招聘?jìng)淇碱}庫(kù)及答案詳解1套
- 2026年黃石市園博文化旅游經(jīng)營(yíng)管理有限公司招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 四川新南城鄉(xiāng)建設(shè)集團(tuán)有限公司2025年面向社會(huì)公開招聘3名一線工作人員的備考題庫(kù)及參考答案詳解一套
- 2026年集團(tuán)招聘廣東省廣輕控股集團(tuán)有限公司招聘?jìng)淇碱}庫(kù)及答案詳解參考
- 物料供應(yīng)商遴選制度
- 多趾畸形護(hù)理查房
- 伊利并購(gòu)澳優(yōu)的財(cái)務(wù)績(jī)效分析
- 胸腺瘤伴重癥肌無力課件
- 安徽省合肥市蜀山區(qū)2024-2025學(xué)年上學(xué)期八年級(jí)數(shù)學(xué)期末試卷
- 電商售后客服主管述職報(bào)告
- 十五五安全生產(chǎn)規(guī)劃思路
- 上海證券有限責(zé)任公司校招職位筆試歷年參考題庫(kù)附帶答案詳解
- 剪刀車專項(xiàng)施工方案
- 2024-2025學(xué)年四川省綿陽市七年級(jí)(上)期末數(shù)學(xué)試卷
- 項(xiàng)目預(yù)算管理咨詢方案
評(píng)論
0/150
提交評(píng)論