Python計(jì)算機(jī)視覺編程與應(yīng)用 課件 第5章 局部圖像特征提?。航屈c(diǎn)檢測(cè)_第1頁
Python計(jì)算機(jī)視覺編程與應(yīng)用 課件 第5章 局部圖像特征提?。航屈c(diǎn)檢測(cè)_第2頁
Python計(jì)算機(jī)視覺編程與應(yīng)用 課件 第5章 局部圖像特征提?。航屈c(diǎn)檢測(cè)_第3頁
Python計(jì)算機(jī)視覺編程與應(yīng)用 課件 第5章 局部圖像特征提取:角點(diǎn)檢測(cè)_第4頁
Python計(jì)算機(jī)視覺編程與應(yīng)用 課件 第5章 局部圖像特征提?。航屈c(diǎn)檢測(cè)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

局部圖像特征提?。宏P(guān)鍵點(diǎn)檢測(cè)關(guān)鍵點(diǎn)提?。ń屈c(diǎn))關(guān)鍵點(diǎn)提取(角點(diǎn))Keypointextraction:Corners9300HarrisCornersPkwy,Charlotte,NC為什么提取關(guān)鍵點(diǎn)Whyextractkeypoints?Motivation:panoramastitching全景圖拼接Wehavetwoimages–howdowecombinethem?Whyextractkeypoints?Motivation:panoramastitching全景圖拼接Wehavetwoimages–howdowecombinethem?Step1:extractkeypoints提取關(guān)鍵點(diǎn)Step2:matchkeypointfeatures匹配關(guān)鍵點(diǎn)Whyextractkeypoints?Motivation:panoramastitching全景圖拼接Wehavetwoimages–howdowecombinethem?Step1:extractkeypointsStep2:matchkeypointfeaturesStep3:alignimages好的關(guān)鍵點(diǎn)Goodkeypoints?好的關(guān)鍵點(diǎn)Characteristicsofgoodkeypoints緊致&高效CompactnessandefficiencyManyfewerkeypointsthanimagepixels關(guān)鍵點(diǎn)數(shù)目比像素少很多顯著性SaliencyEachkeypointisdistinctive關(guān)鍵點(diǎn)是獨(dú)特的、有特色的局部特性LocalityAkeypointoccupiesarelativelysmallareaoftheimage;robusttoclutterandocclusion重復(fù)性/再現(xiàn)性RepeatabilityThesamekeypointcanbefoundinseveralimagesdespitegeometricandphotometrictransformations無論幾何或光學(xué)變換,

同一關(guān)鍵點(diǎn)都能被檢測(cè)到應(yīng)用ApplicationsKeypointsareusedfor:Imagealignment對(duì)齊3Dreconstruction三維重建Motiontracking運(yùn)動(dòng)跟蹤Robotnavigation機(jī)器人導(dǎo)航Databaseindexingandretrieval數(shù)據(jù)庫檢索Objectrecognition目標(biāo)識(shí)別角點(diǎn)檢測(cè):基本思想Q:Corner角點(diǎn)是什么?角點(diǎn)CornerWeshouldeasilyrecognizethepointbylookingthroughasmallwindow在小窗口中就可以很容易識(shí)別出Shiftingawindowinany

directionshouldgivealargechangeinintensity在任意方向移動(dòng),強(qiáng)度都應(yīng)該變化巨大“edge”:

nochangealongtheedgedirection“corner”:

significantchangeinalldirections“flat”region:

nochangeinalldirections角點(diǎn)檢測(cè)

Cornerdetection:Basicidea角點(diǎn)檢測(cè)CornerDetection:DerivationChangeinappearanceofwindowWfortheshift[u,v]:I(x,y)E(u,v)E(0,0)角點(diǎn)檢測(cè)CornerDetection:DerivationChangeinappearanceofwindowWfortheshift[u,v]:兩個(gè)圖像塊之間的L2距離I(x,y)E(u,v)E(3,2)角點(diǎn)檢測(cè)CornerDetection:DerivationChangeinappearanceofwindowWfortheshift[u,v]:兩個(gè)圖像塊之間的L2距離Wewanttofindouthowthisfunctionbehavesforsmallshifts小幅移動(dòng)時(shí)該函數(shù)的表現(xiàn)?E(u,v)Considertheaxis-alignedcase(gradientsareeitherhorizontalorvertical):InterpretingthesecondmomentmatrixHarris角點(diǎn)檢測(cè)算子Harris角點(diǎn)檢測(cè)算子TheHarriscornerdetector計(jì)算步驟計(jì)算圖像的局部梯度局部圖像梯度減去平均值計(jì)算局部梯度的協(xié)方差矩陣計(jì)算特征值和特征向量利用閾值處理特征向量,從而判斷是否為角點(diǎn)Harris角點(diǎn)檢測(cè)算子在一個(gè)很小的局部窗口內(nèi)計(jì)算每個(gè)像素點(diǎn)的梯度值:Harris角點(diǎn)檢測(cè)算子將梯度減去平均值,則是為了做一定程度的歸一化。利用這個(gè)歸一化的梯度值,我們可以計(jì)算協(xié)方差矩陣,從而擬合一個(gè)拋物面(下圖的P,代表梯度計(jì)算的局部圖像塊)基礎(chǔ)知識(shí)回顧:協(xié)方差矩陣方差、協(xié)方差基礎(chǔ)知識(shí)回顧:協(xié)方差矩陣方差、協(xié)方差縮放旋轉(zhuǎn)黑色線條表明特征向量方向基礎(chǔ)知識(shí)回顧:協(xié)方差矩陣方差、協(xié)方差Harris角點(diǎn)檢測(cè)算子這個(gè)協(xié)方差矩陣的特征向量有著特殊的意義,它可以寫作下式,從而反應(yīng)出圖像局部點(diǎn)的特點(diǎn):只有兩個(gè)特征值都比較

大且沒有明顯的差距時(shí),

才是角點(diǎn)。Harris角點(diǎn)檢測(cè)算子方法1:通過來確定是否是角點(diǎn)。方法2:使用確定是否是角點(diǎn)。這個(gè)算子計(jì)算量更小。兩者檢測(cè)結(jié)果很相似TheHarriscornerdetector計(jì)算偏導(dǎo)Computepartialderivativesateachpixel計(jì)算局部二階矩矩陣ComputesecondmomentmatrixMinaGaussianwindowaroundeachpixel:計(jì)算角點(diǎn)響應(yīng)函數(shù)ComputecornerresponsefunctionRC.HarrisandM.Stephens,ACombinedCornerandEdgeDetector,Proceedingsofthe4thAlveyVisionConference:pages147—151,1988.

HarrisDetector:StepsHarrisDetector:StepsComputecornerresponseRTheHarriscornerdetector計(jì)算偏導(dǎo)Computepartialderivativesateachpixel計(jì)算局部二階矩矩陣ComputesecondmomentmatrixMinaGaussianwindowaroundeachpixel:計(jì)算角點(diǎn)響應(yīng)函數(shù)ComputecornerresponsefunctionR閾值過濾ThresholdR局部最大值Findlocalmaximaofresponsefunction(nonmaximumsuppression)C.HarrisandM.Stephens,ACombinedCornerandEdgeDetector,Proceedingsofthe4thAlveyVisionConference:pages147—151,1988.

HarrisDetector:StepsFindpointswithlargecornerresponse:R>thresholdHarrisDetector:StepsTakeonlythepointsoflocalmaximaofRHarrisDetector:Steps角點(diǎn)特征的魯棒性RobustnessofcornerfeaturesWhathappenstocornerfeatureswhentheimageundergoesgeometricorphotometrictransformations?當(dāng)圖像發(fā)生幾何或光學(xué)變換時(shí),角點(diǎn)特征?AffineintensitychangeOnlyderivativesareused,soinvarianttointensityshiftI

I

+

b只利用了梯度,多一對(duì)于亮度偏移具有不變性

Intensityscaling:I

a

IRx

(imagecoordinate)thresholdRx

(imagecoordinate)亮度變化部分不變性PartiallyinvarianttoaffineintensitychangeI

a

I+bImagetranslationDerivativesandwindowfunctionareshift-invariantCornerlocationiscovariantw.r.t.translation與平移協(xié)變ImagerotationSecondmomentellipserotatesbutitsshape(i.e.eigenvalues)remainsthesame二階矩橢圓旋轉(zhuǎn)但形狀(特征值)保持不變Cornerlocationiscovariantw.r.t.rotation與旋轉(zhuǎn)協(xié)變ScalingAllpointswillbeclassifiedasedgesCornerCornerlocationisnotcovariantw.r.t.scaling!與尺度不協(xié)變總結(jié)SummaryHarris角點(diǎn)檢測(cè)算子計(jì)算圖像的局部梯度局部圖像梯度減去平均值計(jì)算局部梯度的協(xié)方差矩陣計(jì)算特征值和特征向量利用閾值處理特征向量,從而判斷是否為角點(diǎn)參考資料計(jì)算機(jī)視覺:原理、算法、應(yīng)用及學(xué)習(xí)(第五版)ComputerVision:AModernApproachbyDavidForsythandJeanPonce(2nded.)ComputerVision:AlgorithmsandApplications,byRichardSzeliski,/Book/計(jì)算攝影學(xué)@/column/hawkcpProgrammingComputerVisionwithPython,JanErikSolemCS543/ECE549ComputerVision,UIUC,/CS231n,斯坦福大學(xué),李飛飛,/計(jì)算攝影學(xué)CS543/ECE549ComputerVisionComputerVision:AlgorithmsandApplicationsCS231n,CNNsforCVConsidertheaxis-alignedcase(gradientsareeitherhorizontalorvertical):InterpretingthesecondmomentmatrixIfeitheraorbiscloseto0,thenthisisnotacorner,sowewantlocationswherebotharelargeInterpretingthesecondmomentmatrix對(duì)角化Inthegeneralcase,needtodiagonalizeM:特征值決定橢圓軸距,R決定方向TheaxislengthsoftheellipsearedeterminedbytheeigenvaluesandtheorientationisdeterminedbyR:directionoftheslowestchangedirectionofthefastestchange(

max)-1/2(

min)-1/2Visualizationofsecondmomentmatricesdirectionoftheslowestchangedirectionofthefastestchange(

max)-1/2(

min)-1/2Visualizationofsecondmomentmatrices特征值決定橢圓軸距,R決定方向directionoftheslowestchangedirectionofthefastestchange(

max)-1/2(

min)-1/2ClassificationofimagepointsusingeigenvaluesofM:Interpretingtheeigenvalues

1

2“Corner”

1and

2arelarge,

1~

2;

Eincreasesinalldirections

1and

2aresmall;

Eisalmostconstantinalldirections“Edge”

1>>

2“Edge”

2>>

1“Flat”regiondirectionoft

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論