版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Quantum
ComputingforTransportationandLogistics
March2024
1|Transportation&Logistics
Acknowledgments
ThankyoutotheQuantumEconomicDevelopmentConsortium(QED-C?)UseCases
TechnicalAdvisoryCommitteeandtheNorthwesternUniversityTransportationCenter.Thisreportwouldnothavebeenpossiblewithouttheleadershipandcontributionsofthe
organizingcommitteeinparticular:
●StephenBrobst,Teradata
●CarlDukatz,Accenture
●KevinGlynn,NorthwesternUniversity
●BretJohnson,NorthwesternUniversityTransportationCenter
●ClaireLecornu,SRI/QED-C
●AlexLuna,AlphaRail
●AllisonSchwartz,D-Wave
TheNationalInstituteofStandardsandTechnologyprovided?nancialsupportforthisstudy.
AboutQED-C
QED-Cisanindustry-drivenconsortiummanagedbySRIInternational.Withadiverse
membershiprepresentingindustry,academia,government,andotherstakeholders,theconsortiumseekstoenableandgrowthequantumindustryandassociatedsupplychain.FormoreaboutQED-C,visitourwebsiteat
.
Suggestedcitation
QuantumEconomicDevelopmentConsortium(QED-C).QuantumComputingforTransportationandLogistics.Arlington,VA:March2024.
/xport24.
Governmentpurposerights
AgreementNo.:OTA-2019-0001
ContractorName:SRIInternational
ContractorAddress:333RavenswoodAvenue,MenloPark,CA94025
ExpirationDate:Perpetual
Use,duplication,ordisclosureissubjecttotherestrictionsasstatedintheAgreementbetweenNISTandSRI.
Non-U.S.Governmentnotice
Copyright?2024SRI.Allrightsreserved.
Disclaimer
ThispublicationoftheQuantumEconomicDevelopmentConsortium,whichismanagedbySRIInternational,doesnotnecessarilyrepresenttheviewsofSRIInternational,anyindividualmemberofQED-C,oranygovernmentagency.
2|Transportation&Logistics
TableofContents
ExecutiveSummary 4
Introduction 8
DecisionMakinginSupplyChainswithQuantumComputing 12
UseCasesImpactandFeasibility 13
Classi?cation 15
ImpactandFeasibilitybyRelevantIndustry 17
ImpactandFeasibilitybyApproach 18
ImpactandFeasibilitybyAreaofOperation 19
PriorityUseCases 23
Recommendations 27
Conclusions 29
AppendixA:Methodology 31
WorkshopGoals:Surfacehigh-impact,feasibleideas 31
Structure:Encouragecollaboration,freshthinking 31
Valuechainmatrix:Abidirectional?ow 33
Workshopprocess:Ideagenerator 33
Ideas:Brainstorm,analysis,selection 33
Conceptcards:Winnowingideas 34
A?exibleratingsystemtopromoteexpansivethinking 34
Conceptposters:Howtoexecute 34
AppendixB:QuantumComputingUseCasesforTransportationandLogistics 36
AppendixC:WorkshopParticipants 42
3|Transportation&Logistics
4|Transportation&Logistics
ExecutiveSummary
Toassessthecurrentstateandfuturepossibilitiesofquantumcomputingandthe
transportationandlogisticsindustry,QED-C’sUseCasesTechnicalAdvisoryCommitteeledthisstudybasedonaworkshopexploringthefeasibilityandimpactofdi?erentusecases.
1
Quantumcomputing(QC)o?ersintriguingsolutionstosupplychain,transportation,and
logisticsproblemsthatclassicalcomputerscannotcompletelysolve.Italsoo?ersthepossibilityofsigni?cantlyfastercomputations,withapplicationsinallmodesofthe
transportationandlogisticsindustry—air,land,andsea.
Thechallengesfacedbythetransportationandlogisticsindustryincludeoptimizationof
inventoryacrossmanyfacilities,routeplanning,minimizationofmanufacturingcosts,last-
miledelivery,factoryandtruckscheduling,dynamicpricingalgorithms,?eetmanagementandmaintenance,sustainabilityandgreenlogistics,energysystems,controlofautonomousvehicles,andnavigationwithinmoderncities.Theliteraturesuggeststhatquantum
computingo?ersadvantagesinthreeprimaryareas:optimization,machinelearning,andsimulation.
Aspartofthisstudy,expertsfromboththetransportationandlogisticsindustryandthe
quantumcommunitiesconvenedataworkshoptoidentifyusecasesattheintersectionofthetwo?elds.Theoverwhelmingmajorityofusecasesidenti?edwereultimately
optimizationproblems,mostofwhichcamedowntoplanningoperations.Incontrast,use
casesapplyingasimulation(fromalogisticsindustryperspective)approachwereseenbyexpertsaslessfeasibleandimpactfulthanmostoptimizationproblems.Severalcompanieshavedemonstratedsmall-scaleprototypesthatapplyQCalgorithmstodi?erentclassesoflogisticsproblems.
2
Fromanalysisofthecurrentstateandthefeasibilityandimpactofusecasesofquantum
computingfortransportationandlogisticsapplications,fourusecasesemergeasthosethatcouldhavethegreatestimpactintherelativelynearterm:
?Optimizationoflaborplans
?Continuousrouteoptimization
?Optimizationofwarehousing
?Demandforecasting
Inaddition,thisreportputsforward?verecommendationsforboostingdevelopmentandadoptionofQCtechnologiesbythetransportationandlogisticsindustry:
1Thestudymethodology,identifiedusecases,andworkshopparticipantsarepresentedinAppendicesA,B,andC.
2See,e.g.,SeanJ.Weinberg,FabioSanches,TakanoriIde,KazumitzuKamiya,andRandallCorrell2023.Supply
chainlogisticswithquantumandclassicalannealingalgorithms.ScientificReports13:4770,doi:
10.1038/s41598-
023-31765-8;
ChristopherD.B.Bentley,SamuelMarsh,AndréR.R.Carvalho,PhilipKilby,andMichaelJ.Biercuk.
2022.Quantumcomputingfortransportoptimization.arXiv,arXiv:2206.07313;andCrispinH.V.Cooper.2022.ExploringPotentialApplicationsofQuantumComputinginTransportationModelling,IEEETransactionsonIntelligentTransportationSystems23,no.9:14712–20,doi:
10.1109/TITS.2021.3132161.
5|Transportation&Logistics
?Increaseoperationale?ciencyforbusinesses:Quantumcomputingo?erspossiblesolutionsforincreasedbusinesse?cienciesviabetterroutingprograms,e?cient
cargoloading,optimizedmanufacturingprocesses,andoptimallaborscheduling.
However,QCadoptioncanbeprohibitivelyexpensiveandrisky,especiallyforsmallercompanies.Toovercomethisbarrier,QCcompaniescouldo?erdiscountedratesforsmalllogisticscompaniestotrialthetechnologyandseethebusinesse?ciencies
thatcanbegained.ThiswouldalsoprovidevaluablefeedbackanddatatotheQCcompanytoimprovetheirproduct.Thiscross-industrycollaborationcouldeven
facilitatethedevelopmentofquantum-enabledrouteplanningandotheroptimizationtools.
Relatedly,ManufacturingUSAisanetworkofinstitutesthateachhaveadistinct
technologyfocusbutwithacommongoal:tosecurethefutureofUSmanufacturingthroughinnovation,education,andcollaboration.Emergingtechnologieslike
quantumcomputerscouldimpactallofthetechnologies,rangingfrom?exible
electronicstobiomaterials.TheManufacturingUSAprogramshoulddisseminate
informationaboutquantumcomputingandotheremergingtechnologiesacrossthenetworktoensurebroadincorporationasadvancedmanufacturingprocessesare
beingdeveloped.
?Increasesupplychainsecurityandresilience:Therearebroaddependencies
betweenthesecurityandresilienceofnationalandglobalsupplychains.Two
measurescansupportcontinuedinnovationinthisarea:(1)identi?cationofthe
weakestlinksinsupplychainsanddirectionofenhancementstothoseareas,and(2)increasedcapabilitiesforcontingencyplanningtools.QCtechnologiescouldanalyzemoredataacrossmorevariablesandconstraintsthancanclassicalcomputers,
enablingthedevelopmentofmoreaccurateandcomprehensiveforecastsand
operatingplansthatbetterprotectagainstsupplychainthreats.Governmentcanboostthesecapabilitiesofquantumcomputersbycreatingtestbedsandsandboxprogramsfocusedondemonstrations,proofsofconcept,andpilotsofnear-termapplicationsforsupplychainmanagement.
?Addresssustainability:Climatechangeisatopconcernofcompaniesandnations,
andtransportation-basedemissionsarealeadingcontributor.Anypotentialfor
increasesine?cienciesthatreduceemissionsshouldbeexploredanddeveloped.
Oneofthemostimpactfulusesofquantumcomputersintransportationandlogisticsiscontinuousrouteoptimization,whichcandecreaseemissionsandfuelusage
acrosstransportmethods.Ascompaniesincreasinglylooktocuttheircarbon
footprint,theyshouldconsidertheimpactthatQCtechnologyadoptioncanhavebyhelpingthembetteroptimizeroutesandprocessesformaximumfuele?ciency.Asanaddedbonusforcompanies,usingquantumcomputingtooptimizethiswaywilllikelyleadtocostsavingsaswell.
?Optimizegovernmentlogisticsmissions:GovernmentcanbeanearlyadopterofQCsolutionsinoptimizingitsown?eetsandmissions.Forexample,theUSPostal
ServicecoulduseQCtechnologytobetterplan?eetmaintenance,schedulesta?,anddesignmorefuelandtimee?cientroutes.ByadoptingQCtechnologiesinits
6|Transportation&Logistics
earlierstages,governmentcanguaranteerevenuestohelpsustainprivateQCcompanies.
?Createaskilledworkforce:QCtechnologyisevolvingquickly,creatingdemandforskilledworkerswhoareabletocontributetothe?eld.Thisincludesopportunitiesfortheendusersofthetechnology,suchasoperatingplandevelopersandroute
designers,toshapeitsdevelopmentandkeyfeaturesandfunctions.However,mostsupplychainworkerstodayarenotwellversedinquantumtechnology.IncludingQCeducationinindustrialandsupplychainengineeringdegreeprogramscould
increaseunderstandingandadoptionofthisnewtechnology.Trainingcouldalsobeextendedtotheexistingtransportationandlogisticsworkforcebycollaboratingwithprofessionalorganizationstoprovideknowledge,skills,andaccesstothelatestQCtools.Thistrainingcouldbeespeciallyusefulfortheworkerswhofocusonroute
planning,operatingplandesign,andforecasting,i.e.,thetasksthatcouldmostbene?tfromquantumcomputers.
8|Transportation&Logistics
Introduction
Quantumcomputingo?ersintriguingsolutionstosupplychainandlogisticschallengesthatclassicalcomputerscannotcompletelysolve.Italsoo?ersthepossibilityofsigni?cantly
fastercomputations.Bothadvantagescanspurtheimaginationtonewsolutions,new
quantumusecases,andnewbusinessmodelsforallpartsofthetransportationandlogisticsindustry—air,land,andsea.Challengestobeaddressedincludeoptimizationofinventory
acrossmanyfacilities,routeplanning,minimizationofmanufacturingcosts,last-mile
delivery,factoryandtruckscheduling,dynamicpricingalgorithms,?eetmanagementandmaintenance,sustainabilityandgreenlogistics,energysystems,controlofautonomous
vehicles,andnavigationwithinmoderncities(e.g.,tra?c?ow,parking).McKinseyestimatesthatquantumcomputing(QC)couldhaveaneconomicimpactofasmuchas$63billionby2035,
3
andthesupplychainandlogisticsindustryispositionedtobeoneoftheearlier
benefactorsofquantumtechnology.
TheUStransportationindustryfacesnumerouschallengesthatmustbesolvedfortheUSeconomytocontinuetogrowandthriveoverthenextdecadeandbeyond.Tra?c
congestiononthenation’scapacity-constrainedhighwayinfrastructure;railservicequality;workforceplanningandwork-lifebalance;inventoryplanningandproductionmanagement;delaypropagationmitigationacrossinterconnected,multicarriersupplychains;and
greenhousegasemissionreductionareallchallengesthatcannotrealisticallybesolved
solelybyincreasedcapitalexpenditures,newvehiclepropulsiontechnologies,ornew
regulations.Solutionoptionstotheseproblemsarelimitedandinsomecasesextremely
expensive,whichcanpreventbusinessadoption.Theunmatchedutilitythatthepotentialofquantumcomputingo?erspresentsanexceptionalopportunityforUSleadership.Quantumcomputing’srelevance,promise,andeconomicviabilityinthissolutionspacecannotbe
ignored.
Theliteraturesuggeststhatquantumcomputingo?ersadvantagesinthreeprimaryareasforlogisticsandtransportation:optimization,machinelearning(ML),andsimulation(see
sidebar).Manycompaniesarealreadyexploringthesepotentialapplications.Forexample,Quantum-Southhastestedtheuseofquantumalgorithmstooptimizeaircargo,
4
andIBMandExxonMobilhavecollaboratedtoexploretheuseofquantumcomputerstooptimizeshippingroutesamidstavastnumberofmaritimecomplexities,suchasschedulingand
minimizingdistancetraveled.
5
3Gao,Scarlett,TimoM?ller,NikoMohr,AlexiaPastré,andFelixZiegler.2023.Gearingupformobility’sfuturewithquantumcomputing.McKinsey&Company,September13.
/industries/automotive-and-assembly/our-insights/gearing-up-for-mobilitys-
future-with-quantum-computing.
4Dargan,James.2022.Quantum-SouthExploresQuantumAlgorithmsforAirCargoOptimization.TheQuantum
Insider,December2.
/2022/12/02/quantum-south-explores-quantum-
algorithms-for-air-cargo-optimization/.
5Fretty,Peter.2021.CouldQuantumComputingSolveMaritimeComplexities?IndustryWeek,March31.
/technology-and-iiot/article/21159784/could-quantum-computing-solve-
maritime-complexities.
9|Transportation&Logistics
De?ningtheterm“simulation”
Supplychainandlogisticsexpertsusetheterm"simulation”to
meanMonteCarlo-stylediscreteeventsimulationmostlyfor
modelingdemandforlogisticsservices.Thisdi?ersfromthe
quantumindustryde?nition,whichgenerallyreferstosimulationofquantummechanicalsystems(mostcommonlychemistryand
materialscience).Further,whilethesimulationdescribedby
logisticsexpertsisusuallysolvedusingmachinelearning
algorithmsinaquantumcomputer,thelogisticsexpertsinvolvedinthisstudyusedtheterm“machinelearning”tolabelproblemsof
patternrecognitionindata—whichisaclassicalcomputing
de?nition.Inthispaper,thede?nitionsof“simulation”and“machinelearning”followthelogisticsexperts’de?nition.a
aForahistoryoftheuseoftheterms“simulation”and“optimization”byindustry,
seeJean-Fran?oisCordeau,PaoloToth,andDanieleVigo,“ASurveyofOptimizationModelsforTrainRoutingandScheduling,”TransportationScience32,no.4(1998):
380–404,doi:
10.1287/trsc.32.4.380.
Manygovernmentsaresupportingthedevelopmentandapplicationofquantum
technologies.IntheUnitedStates,forexample,SandiaNationalLaboratoriesisdevelopingQCalgorithmstosolvesupplychainoptimizationproblems.
6
Furthermore,theUSCongresscalledforareviewofwhatapplicationscanbedevelopedintheneartermusingtoday’s
quantumtechnology;inresponsetothis,QED-Cdetailedhowpublic-privatepartnerships
shouldbeusedtoadvanceapplicationdevelopment.
7
Additionally,Congressis
reauthorizingtheNationalQuantumInitiativeAct
8
withnewlanguagethatfocusessupportonnear-andmid-termapplicationdevelopmentthroughtestbedprograms.
9
CongressalsopassedtheNationalDefenseAuthorizationAct(NDAA)inJanuary2023,
10
whichincludesapilotprogramtodevelopquantumapplications.Bothpiecesoflegislationencourage
collaborationwithindustry,includingconsiderationofquantumannealing,gatemodel,andquantum-hybridtechnologies,tomovethemostpromisingofquantumtechnologiesoutofthelabandintocommercialapplications.OthercountriesinvestinginQCtechnologiesto
developquantumapplicationsincludetheUnitedKingdom’scallforquantumapplication
6Law,Marcus.2023.Howquantumcomputingcansolvesupplychainchallenges.SupplyChain,February16.
/pr_newswire/how-quantum-computing-can-solve-supply-chain-challenges.
7QuantumEconomicDevelopmentConsortium(QED-C).2022.PublicPrivatePartnershipsinQuantumComputing:ThePotentialforAcceleratingNear-TermQuantumApplications.Arlington,VA.
/ppp22/
.
8USCongress,House.2023.ABilltoreauthorizetheNationalQuantumInitiativeAct,andforotherpurposes(HR6213).Washington.
/118/bills/hr6213/BILLS-118hr6213ih.pdf
.
9USCongress,HouseCommitteeonScience,Space,andTechnology.2023.HR6213-TheNationalQuantumInitiativeReauthorizationAct:Passedbyfullcommittee,November29.Washington.
/2023/11/the-national-quantum-initiative-reauthorization-act.
10USCongress.2023.NationalDefenseAuthorizationActforFiscalYear2024.January3.Washington.
/118/bills/hr2670/BILLS-118hr2670enr.pdf.
10|Transportation&Logistics
feasibility,
11
Australia’se?ortstoutilizequantumcomputingfortransportationnetwork
optimization,
12
Japan’svisionofaquantumsociety,
13
andareportreleasedbytheCouncilofCanadianAcademiesthatidenti?edseveralindustries,includingtransportationandlogistics,thatcanbene?tfromquantumcomputing.
14
Inalignmentwiththepotentialforsigni?canteconomicimpactandimplicationsrelatedtoclimateandotherpolicies,itisimportanttoexplorekeyquestionspertainingtoquantumcomputinginthetransportationandlogisticsindustry:
●Whatareclassesofproblemsinlogisticsandtransportationthatmaybene?tfromquantumcomputing?Whatistherelevantscale?WhatistheanticipatedbusinessimpactofsuchQCsolution?Whatisthelikelihoodorfeasibilityofdeployingthis
solution?
●Whatisthestateofhigh-performancecomputingandQCinthelogisticsand
transportationsector?Forexample,isitcommonlyusedatscale,istheindustrywelleducatedonthetechnology,aretherestrongpartnerships?
●Whatconstraintsdologisticsandtransportationcompaniesfacewhenadopting
emergingtechnologies?Constraintsmightincludelowpro?tmargins,lagging
technology,highcomputingenergycosts,and/orlackofskills.WhichconstraintscanQCo?eringshelptoaddress?
Inseekingtoanswerthesequestions,expertsfromboththetransportationandlogistics
industryandthequantumcommunitiesconvenedataworkshoptoexplorethetypesof
quantumcomputingsystemsavailable,thealgorithmsandmethodstheyuse,theusecasesthattheyshowpromiseinaddressing,andthebusinessandgovernmentactionsthatcanbetakentoprogressthe?eldforward.
11GOV.UK.2023.FundingCompetition:FeasibilityStudiesinQuantumComputingApplications(February13–
March29).London
.uk/competition/1468/overview/3e95c2d9-
70ba-4a06-880f-c814422bb1f1.
12TransportforNewSouthWales.2021.QuantumTechnology.Sydney.
.au/system/?les/media/documents/2021/Transport%20for%20NSW%20and%20
Quantum%20Technology%20-%20WCAG%20version.PDF.
13SecretariatofScience,Technology,andInnovationPolicy.2022.VisionofQuantumFutureSociety.Tokyo.
https://www8.cao.go.jp/cstp/english//outline_vision.pdf.
14CouncilofCanadianAcademies.2023.QuantumPotential.Ottawa.
https://www.cca-
reports.ca/reports/quantum-technologies/.
Source:NationalInstituteofStandardsandTechnology
12|Transportation&Logistics
DecisionMakinginSupplyChainswithQuantumComputing
Amajorityofthe83usecasesidenti?ed(72%)centeredaroundusingquantumcomputingtohelpwithdecisionmaking.Physicalsupplychainsareverycomplexwithmanyvariables,andunderstandinghowtomakegoodoperationaldecisionsishard.Thecombinationsof
movementforthousandsoftrucks,trains,planes,andshipsaredi?cultorimpossibleto
modelusingclassicalcomputing.Thus,mostoftheworkshop’sdiscussionscenteredaroundeitherproblemsthatseektooptimizeallocationofresources(e.g.,trucks,people)orthe
needtosimulatemarketdemandandre?ectthatsimulationonsupply(e.g.,trains,planes,labor).Theparticipantsalsodiscussedtheuseofmachinelearningto?ndpatternsin
performanceinformationinordertomakegoodorbetterdecisions.
Onlyafewoftheusecasesidenti?ednotedtheuseofquantumcomputingforresearch,
suchastodevelopbetterbatteries/powersourcesforvehiclesortominimizepollution,butthetimelinesforachievingthosewerefartheroutbecauseofthehardwareadvances
neededinQCtechnology.
Optimization.Asnoted,themajority(46ofthe83usecases,55%)oftheusecasesdescribedoptimizationasthekeyneed.Therewereseveralvariationsofoptimizationnoted.Many
focusedonaroutingproblem—?ndingthemoste?cientwaysformultiplevehiclesto
travelthatreducestraveltimesandmaximizescustomerservice.Variationsofrouting
included?ndingbetterschedulingtoolsformanufacturingande?cientroutingofvehicles
tominimizetra?ccongestion.Otheroptimizationsfocusedone?cientloadingand
unloadinginacomplexenvironment,suchasschedulingtheloadingandcreationofrailcarsandloadinganairplanetomaximizetheloadcarried.QuestionswereraisedaboutwhetheroptimizationcouldalsoapplytogovernmentcomplianceburdenssuchasloweringCO2
emissionsorexpeditingPFASremediatione?orts.
Simulation.Thenextmostpopularapproach(22of83,26%)intheidenti?edusecaseswas
simulation.Examplestendedtocenteraroundsimulatingorforecastingdemandthatinturnwouldallowtransportationassetstobeoptimizedtomeetthesimulatedforecast.Oneuse
casecalledforthecreationofafulldigitaltwin,i.e.,avirtualrepresentationofafactory,truck,train,etc.createdtosimulatedemandandsupplyplanning.
MachineLearning.Asmallernumberofusecases(11of83,13%)notedhowMLcouldhelp
withpatternrecognition,especiallyformonitoringvehicleperformanceformaintenanceandsafety.
Forafewusecasesforwhichoptimizationwastheprimaryapproachidenti?ed,experts
notedthatsimulationandMLwouldlikelyalsoplayarole,forexample,withassigning?eetsandcrewsandmanagingon-timedeliveries.
13|Transportation&Logistics
UseCasesImpactandFeasibility
Weanalyzedthe83usecasesforquantumtechnologiesinlogisticsidenti?edbyexperts
andconsolidatedtheminto15examples(see
Figure2)
.Wefurtherrankedtheusecasesasthoseexpectedtohavethegreatestimpactandthosejudgedtobethemostfeasible.Theaverageimpactandfeasibilityscoresofeachusecasefromthisassessmentarepresentedinthegraphicsbelow.Thereisaclearlinearrelationship:Thefeasibilityandimpactofausecaseareoftensimilarlyranked,thoughthiscouldbecausedinpartbyanunconsciousbiaspeoplemaycarrythatthemorefeasibleusecasewillalsobethemoreimpactfulone.Still,weconcludefromthisassessmentthattherearekeyopportunitiesthatarerelatively
preparedtoleveragequantumtechnologyforlogisticalpurposes.
Theusecaserankedthemostfeasibleandimpactfuliscontinuousrouteoptimization,
makingitthebesttargetforresearch.Highimpactandhighfeasibilityimplylesstimeis
requiredtodevelopaworkingsolutionthanisrequiredforotherconcepts.Continuousrouteoptimizationisabroadconceptthatisrelevanttoalltransportationmodalities.Route
optimizationisanoldproblem,?rstdescribedbyLeonhardEulerinthe1700s,andresearchsinceWorldWarIIisextensive.
15
Therearealgorithmsforclassicalcomputerstosolve
routingproblems,butworkshopparticipantsnotedthattheproblemseithertaketoolongusingconventionalcomputingoraresimplytoobigforthecomputers,requiringenduserstoreducethenumberofvariablesorconstraintsinputtedintothemodel.
Theconceptratedthesecondmostfeasibleisoperatingplandesignandtrainscheduling.
Thisconceptreferstoaprocessofforecastingneedsfora?eet,includingthecrew,vehicles,andload,anddevelopingaplantomeettheneeds.Operatingplansarecomprehensive,
oftenconsideringfactorssuchastrainschedulingandrouting,traincarconstruction,cardistribution,and?eetmanagement.However,thisconceptwasratedonlythe?fthmostimpactful.Thisusecaseperfectlyillustratestheamountofcomplexitythatshouldbe
addressedinanoptimalsolution;routing,loading,personnelscheduling,maintenanceschedules,construction,weatherdisruptions,andmoreareallpossiblefactorstotrytoaccountfor.
15Euler,Leonhard.1741.Solutioproblematisadgeometriamsituspertinentis,CommentariiacademiaescientiarumPetropolitanae8:128–40.
14|Transportation&Logistics
Figure1:Impactandfeasibilityofthe15consolidatedusecases
Figure2:The15consolidatedusecases,categorizedbytopic,typeofproblem,andrelevantquantum
technology
15|Transportation&Logistics
Classi?cation
The83usecaseshavebeenclassi?edbyindustry,algorithmapproach(e.g.,optimization,ML,simulation),andareaofoperations(department).
Industry:Classi?cationbyindustryisgenerallyorganizedbymodeoftransportation(truck,train,plane,ocean),manufacturing,orpassengervehicleapplications.Justoverhalf(43of
83,51%)oftheusecasescouldbeappliedtoallindustries.Therestareidenti?edasspeci?ctoaportionofthesupplychain:16usecasesformanufacturing,10fortrucking,7for
passengervehiclesandcityapplications,4forretaillogistics,and3forrail.
Figure3:Numberofusecasesclassi?edineachindustry
Typeofproblem:Thedataareclassi?edbyproblemapproach.Theworkshopparticipants
wereaskedtouseoptimization,simulation,andmachinelearningastheirinitialchoices,andthisdefaultwassupportedbytheworkshop’sendresults:Thevastmajorityofusecasesareclassi?edprimarilyasanoptimizationproblem.
16|Transportation&Logistics
Figure4:Numberofusecasesclassi?edineachprimarytypeofproblem
Area/departmentthatbene?tsfromaquantumsolution:Thedataarealsocategorizedby
departmentorareaofoperations.Congruentwiththefocusonoptimization,mostproblemsareinsomewayrelatedtotheplanningfunctioninacompany;only6usecasesare
problemslikelytobeassignedtoanIT/datateamandanother6wouldbeascribedtoagroupworkingonsustainabilityissues.
Fig
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床醫(yī)學麻醉學(呼吸功能的監(jiān)控)試題及答案
- 電池試制工效率提升考核試卷及答案
- 急癥患者入院試題及答案
- (班組級)吊裝安裝三級安全教育考試卷及答案
- 婦產(chǎn)科護理學模擬練習題含參考答案
- 臨床護理實踐指南考試復習題庫(含答案)
- 一套機械工程師常見面試題目(含答案)
- 失禁性皮炎試題及答案
- 2025年行政執(zhí)法人員考試試題庫及參考答案
- 人文考試試題卷(附答案)
- 食堂餐廳維修項目方案(3篇)
- 醫(yī)用手術器械講解
- 腫瘤晚期呼吸困難治療
- 車間電纜整改方案模板(3篇)
- 徐州村務管理辦法
- 冰芯氣泡古大氣重建-洞察及研究
- 廣東省惠州市2026屆高三上學期第一次調研考試 歷史 含答案
- DB50∕T 1604-2024 地質災害防治邊坡工程結構可靠性設計規(guī)范
- 中國電氣裝備資產(chǎn)管理有限公司招聘筆試題庫2025
- 糖尿病足的護理常規(guī)講課件
- JG/T 155-2014電動平開、推拉圍墻大門
評論
0/150
提交評論