2024年量子計算在交通運輸與物流領域的應用研究報告 Quantum Computing for Transportation and Logistics_第1頁
2024年量子計算在交通運輸與物流領域的應用研究報告 Quantum Computing for Transportation and Logistics_第2頁
2024年量子計算在交通運輸與物流領域的應用研究報告 Quantum Computing for Transportation and Logistics_第3頁
2024年量子計算在交通運輸與物流領域的應用研究報告 Quantum Computing for Transportation and Logistics_第4頁
2024年量子計算在交通運輸與物流領域的應用研究報告 Quantum Computing for Transportation and Logistics_第5頁
已閱讀5頁,還剩68頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Quantum

ComputingforTransportationandLogistics

March2024

1|Transportation&Logistics

Acknowledgments

ThankyoutotheQuantumEconomicDevelopmentConsortium(QED-C?)UseCases

TechnicalAdvisoryCommitteeandtheNorthwesternUniversityTransportationCenter.Thisreportwouldnothavebeenpossiblewithouttheleadershipandcontributionsofthe

organizingcommitteeinparticular:

●StephenBrobst,Teradata

●CarlDukatz,Accenture

●KevinGlynn,NorthwesternUniversity

●BretJohnson,NorthwesternUniversityTransportationCenter

●ClaireLecornu,SRI/QED-C

●AlexLuna,AlphaRail

●AllisonSchwartz,D-Wave

TheNationalInstituteofStandardsandTechnologyprovided?nancialsupportforthisstudy.

AboutQED-C

QED-Cisanindustry-drivenconsortiummanagedbySRIInternational.Withadiverse

membershiprepresentingindustry,academia,government,andotherstakeholders,theconsortiumseekstoenableandgrowthequantumindustryandassociatedsupplychain.FormoreaboutQED-C,visitourwebsiteat

.

Suggestedcitation

QuantumEconomicDevelopmentConsortium(QED-C).QuantumComputingforTransportationandLogistics.Arlington,VA:March2024.

/xport24.

Governmentpurposerights

AgreementNo.:OTA-2019-0001

ContractorName:SRIInternational

ContractorAddress:333RavenswoodAvenue,MenloPark,CA94025

ExpirationDate:Perpetual

Use,duplication,ordisclosureissubjecttotherestrictionsasstatedintheAgreementbetweenNISTandSRI.

Non-U.S.Governmentnotice

Copyright?2024SRI.Allrightsreserved.

Disclaimer

ThispublicationoftheQuantumEconomicDevelopmentConsortium,whichismanagedbySRIInternational,doesnotnecessarilyrepresenttheviewsofSRIInternational,anyindividualmemberofQED-C,oranygovernmentagency.

2|Transportation&Logistics

TableofContents

ExecutiveSummary 4

Introduction 8

DecisionMakinginSupplyChainswithQuantumComputing 12

UseCasesImpactandFeasibility 13

Classi?cation 15

ImpactandFeasibilitybyRelevantIndustry 17

ImpactandFeasibilitybyApproach 18

ImpactandFeasibilitybyAreaofOperation 19

PriorityUseCases 23

Recommendations 27

Conclusions 29

AppendixA:Methodology 31

WorkshopGoals:Surfacehigh-impact,feasibleideas 31

Structure:Encouragecollaboration,freshthinking 31

Valuechainmatrix:Abidirectional?ow 33

Workshopprocess:Ideagenerator 33

Ideas:Brainstorm,analysis,selection 33

Conceptcards:Winnowingideas 34

A?exibleratingsystemtopromoteexpansivethinking 34

Conceptposters:Howtoexecute 34

AppendixB:QuantumComputingUseCasesforTransportationandLogistics 36

AppendixC:WorkshopParticipants 42

3|Transportation&Logistics

4|Transportation&Logistics

ExecutiveSummary

Toassessthecurrentstateandfuturepossibilitiesofquantumcomputingandthe

transportationandlogisticsindustry,QED-C’sUseCasesTechnicalAdvisoryCommitteeledthisstudybasedonaworkshopexploringthefeasibilityandimpactofdi?erentusecases.

1

Quantumcomputing(QC)o?ersintriguingsolutionstosupplychain,transportation,and

logisticsproblemsthatclassicalcomputerscannotcompletelysolve.Italsoo?ersthepossibilityofsigni?cantlyfastercomputations,withapplicationsinallmodesofthe

transportationandlogisticsindustry—air,land,andsea.

Thechallengesfacedbythetransportationandlogisticsindustryincludeoptimizationof

inventoryacrossmanyfacilities,routeplanning,minimizationofmanufacturingcosts,last-

miledelivery,factoryandtruckscheduling,dynamicpricingalgorithms,?eetmanagementandmaintenance,sustainabilityandgreenlogistics,energysystems,controlofautonomousvehicles,andnavigationwithinmoderncities.Theliteraturesuggeststhatquantum

computingo?ersadvantagesinthreeprimaryareas:optimization,machinelearning,andsimulation.

Aspartofthisstudy,expertsfromboththetransportationandlogisticsindustryandthe

quantumcommunitiesconvenedataworkshoptoidentifyusecasesattheintersectionofthetwo?elds.Theoverwhelmingmajorityofusecasesidenti?edwereultimately

optimizationproblems,mostofwhichcamedowntoplanningoperations.Incontrast,use

casesapplyingasimulation(fromalogisticsindustryperspective)approachwereseenbyexpertsaslessfeasibleandimpactfulthanmostoptimizationproblems.Severalcompanieshavedemonstratedsmall-scaleprototypesthatapplyQCalgorithmstodi?erentclassesoflogisticsproblems.

2

Fromanalysisofthecurrentstateandthefeasibilityandimpactofusecasesofquantum

computingfortransportationandlogisticsapplications,fourusecasesemergeasthosethatcouldhavethegreatestimpactintherelativelynearterm:

?Optimizationoflaborplans

?Continuousrouteoptimization

?Optimizationofwarehousing

?Demandforecasting

Inaddition,thisreportputsforward?verecommendationsforboostingdevelopmentandadoptionofQCtechnologiesbythetransportationandlogisticsindustry:

1Thestudymethodology,identifiedusecases,andworkshopparticipantsarepresentedinAppendicesA,B,andC.

2See,e.g.,SeanJ.Weinberg,FabioSanches,TakanoriIde,KazumitzuKamiya,andRandallCorrell2023.Supply

chainlogisticswithquantumandclassicalannealingalgorithms.ScientificReports13:4770,doi:

10.1038/s41598-

023-31765-8;

ChristopherD.B.Bentley,SamuelMarsh,AndréR.R.Carvalho,PhilipKilby,andMichaelJ.Biercuk.

2022.Quantumcomputingfortransportoptimization.arXiv,arXiv:2206.07313;andCrispinH.V.Cooper.2022.ExploringPotentialApplicationsofQuantumComputinginTransportationModelling,IEEETransactionsonIntelligentTransportationSystems23,no.9:14712–20,doi:

10.1109/TITS.2021.3132161.

5|Transportation&Logistics

?Increaseoperationale?ciencyforbusinesses:Quantumcomputingo?erspossiblesolutionsforincreasedbusinesse?cienciesviabetterroutingprograms,e?cient

cargoloading,optimizedmanufacturingprocesses,andoptimallaborscheduling.

However,QCadoptioncanbeprohibitivelyexpensiveandrisky,especiallyforsmallercompanies.Toovercomethisbarrier,QCcompaniescouldo?erdiscountedratesforsmalllogisticscompaniestotrialthetechnologyandseethebusinesse?ciencies

thatcanbegained.ThiswouldalsoprovidevaluablefeedbackanddatatotheQCcompanytoimprovetheirproduct.Thiscross-industrycollaborationcouldeven

facilitatethedevelopmentofquantum-enabledrouteplanningandotheroptimizationtools.

Relatedly,ManufacturingUSAisanetworkofinstitutesthateachhaveadistinct

technologyfocusbutwithacommongoal:tosecurethefutureofUSmanufacturingthroughinnovation,education,andcollaboration.Emergingtechnologieslike

quantumcomputerscouldimpactallofthetechnologies,rangingfrom?exible

electronicstobiomaterials.TheManufacturingUSAprogramshoulddisseminate

informationaboutquantumcomputingandotheremergingtechnologiesacrossthenetworktoensurebroadincorporationasadvancedmanufacturingprocessesare

beingdeveloped.

?Increasesupplychainsecurityandresilience:Therearebroaddependencies

betweenthesecurityandresilienceofnationalandglobalsupplychains.Two

measurescansupportcontinuedinnovationinthisarea:(1)identi?cationofthe

weakestlinksinsupplychainsanddirectionofenhancementstothoseareas,and(2)increasedcapabilitiesforcontingencyplanningtools.QCtechnologiescouldanalyzemoredataacrossmorevariablesandconstraintsthancanclassicalcomputers,

enablingthedevelopmentofmoreaccurateandcomprehensiveforecastsand

operatingplansthatbetterprotectagainstsupplychainthreats.Governmentcanboostthesecapabilitiesofquantumcomputersbycreatingtestbedsandsandboxprogramsfocusedondemonstrations,proofsofconcept,andpilotsofnear-termapplicationsforsupplychainmanagement.

?Addresssustainability:Climatechangeisatopconcernofcompaniesandnations,

andtransportation-basedemissionsarealeadingcontributor.Anypotentialfor

increasesine?cienciesthatreduceemissionsshouldbeexploredanddeveloped.

Oneofthemostimpactfulusesofquantumcomputersintransportationandlogisticsiscontinuousrouteoptimization,whichcandecreaseemissionsandfuelusage

acrosstransportmethods.Ascompaniesincreasinglylooktocuttheircarbon

footprint,theyshouldconsidertheimpactthatQCtechnologyadoptioncanhavebyhelpingthembetteroptimizeroutesandprocessesformaximumfuele?ciency.Asanaddedbonusforcompanies,usingquantumcomputingtooptimizethiswaywilllikelyleadtocostsavingsaswell.

?Optimizegovernmentlogisticsmissions:GovernmentcanbeanearlyadopterofQCsolutionsinoptimizingitsown?eetsandmissions.Forexample,theUSPostal

ServicecoulduseQCtechnologytobetterplan?eetmaintenance,schedulesta?,anddesignmorefuelandtimee?cientroutes.ByadoptingQCtechnologiesinits

6|Transportation&Logistics

earlierstages,governmentcanguaranteerevenuestohelpsustainprivateQCcompanies.

?Createaskilledworkforce:QCtechnologyisevolvingquickly,creatingdemandforskilledworkerswhoareabletocontributetothe?eld.Thisincludesopportunitiesfortheendusersofthetechnology,suchasoperatingplandevelopersandroute

designers,toshapeitsdevelopmentandkeyfeaturesandfunctions.However,mostsupplychainworkerstodayarenotwellversedinquantumtechnology.IncludingQCeducationinindustrialandsupplychainengineeringdegreeprogramscould

increaseunderstandingandadoptionofthisnewtechnology.Trainingcouldalsobeextendedtotheexistingtransportationandlogisticsworkforcebycollaboratingwithprofessionalorganizationstoprovideknowledge,skills,andaccesstothelatestQCtools.Thistrainingcouldbeespeciallyusefulfortheworkerswhofocusonroute

planning,operatingplandesign,andforecasting,i.e.,thetasksthatcouldmostbene?tfromquantumcomputers.

8|Transportation&Logistics

Introduction

Quantumcomputingo?ersintriguingsolutionstosupplychainandlogisticschallengesthatclassicalcomputerscannotcompletelysolve.Italsoo?ersthepossibilityofsigni?cantly

fastercomputations.Bothadvantagescanspurtheimaginationtonewsolutions,new

quantumusecases,andnewbusinessmodelsforallpartsofthetransportationandlogisticsindustry—air,land,andsea.Challengestobeaddressedincludeoptimizationofinventory

acrossmanyfacilities,routeplanning,minimizationofmanufacturingcosts,last-mile

delivery,factoryandtruckscheduling,dynamicpricingalgorithms,?eetmanagementandmaintenance,sustainabilityandgreenlogistics,energysystems,controlofautonomous

vehicles,andnavigationwithinmoderncities(e.g.,tra?c?ow,parking).McKinseyestimatesthatquantumcomputing(QC)couldhaveaneconomicimpactofasmuchas$63billionby2035,

3

andthesupplychainandlogisticsindustryispositionedtobeoneoftheearlier

benefactorsofquantumtechnology.

TheUStransportationindustryfacesnumerouschallengesthatmustbesolvedfortheUSeconomytocontinuetogrowandthriveoverthenextdecadeandbeyond.Tra?c

congestiononthenation’scapacity-constrainedhighwayinfrastructure;railservicequality;workforceplanningandwork-lifebalance;inventoryplanningandproductionmanagement;delaypropagationmitigationacrossinterconnected,multicarriersupplychains;and

greenhousegasemissionreductionareallchallengesthatcannotrealisticallybesolved

solelybyincreasedcapitalexpenditures,newvehiclepropulsiontechnologies,ornew

regulations.Solutionoptionstotheseproblemsarelimitedandinsomecasesextremely

expensive,whichcanpreventbusinessadoption.Theunmatchedutilitythatthepotentialofquantumcomputingo?erspresentsanexceptionalopportunityforUSleadership.Quantumcomputing’srelevance,promise,andeconomicviabilityinthissolutionspacecannotbe

ignored.

Theliteraturesuggeststhatquantumcomputingo?ersadvantagesinthreeprimaryareasforlogisticsandtransportation:optimization,machinelearning(ML),andsimulation(see

sidebar).Manycompaniesarealreadyexploringthesepotentialapplications.Forexample,Quantum-Southhastestedtheuseofquantumalgorithmstooptimizeaircargo,

4

andIBMandExxonMobilhavecollaboratedtoexploretheuseofquantumcomputerstooptimizeshippingroutesamidstavastnumberofmaritimecomplexities,suchasschedulingand

minimizingdistancetraveled.

5

3Gao,Scarlett,TimoM?ller,NikoMohr,AlexiaPastré,andFelixZiegler.2023.Gearingupformobility’sfuturewithquantumcomputing.McKinsey&Company,September13.

/industries/automotive-and-assembly/our-insights/gearing-up-for-mobilitys-

future-with-quantum-computing.

4Dargan,James.2022.Quantum-SouthExploresQuantumAlgorithmsforAirCargoOptimization.TheQuantum

Insider,December2.

/2022/12/02/quantum-south-explores-quantum-

algorithms-for-air-cargo-optimization/.

5Fretty,Peter.2021.CouldQuantumComputingSolveMaritimeComplexities?IndustryWeek,March31.

/technology-and-iiot/article/21159784/could-quantum-computing-solve-

maritime-complexities.

9|Transportation&Logistics

De?ningtheterm“simulation”

Supplychainandlogisticsexpertsusetheterm"simulation”to

meanMonteCarlo-stylediscreteeventsimulationmostlyfor

modelingdemandforlogisticsservices.Thisdi?ersfromthe

quantumindustryde?nition,whichgenerallyreferstosimulationofquantummechanicalsystems(mostcommonlychemistryand

materialscience).Further,whilethesimulationdescribedby

logisticsexpertsisusuallysolvedusingmachinelearning

algorithmsinaquantumcomputer,thelogisticsexpertsinvolvedinthisstudyusedtheterm“machinelearning”tolabelproblemsof

patternrecognitionindata—whichisaclassicalcomputing

de?nition.Inthispaper,thede?nitionsof“simulation”and“machinelearning”followthelogisticsexperts’de?nition.a

aForahistoryoftheuseoftheterms“simulation”and“optimization”byindustry,

seeJean-Fran?oisCordeau,PaoloToth,andDanieleVigo,“ASurveyofOptimizationModelsforTrainRoutingandScheduling,”TransportationScience32,no.4(1998):

380–404,doi:

10.1287/trsc.32.4.380.

Manygovernmentsaresupportingthedevelopmentandapplicationofquantum

technologies.IntheUnitedStates,forexample,SandiaNationalLaboratoriesisdevelopingQCalgorithmstosolvesupplychainoptimizationproblems.

6

Furthermore,theUSCongresscalledforareviewofwhatapplicationscanbedevelopedintheneartermusingtoday’s

quantumtechnology;inresponsetothis,QED-Cdetailedhowpublic-privatepartnerships

shouldbeusedtoadvanceapplicationdevelopment.

7

Additionally,Congressis

reauthorizingtheNationalQuantumInitiativeAct

8

withnewlanguagethatfocusessupportonnear-andmid-termapplicationdevelopmentthroughtestbedprograms.

9

CongressalsopassedtheNationalDefenseAuthorizationAct(NDAA)inJanuary2023,

10

whichincludesapilotprogramtodevelopquantumapplications.Bothpiecesoflegislationencourage

collaborationwithindustry,includingconsiderationofquantumannealing,gatemodel,andquantum-hybridtechnologies,tomovethemostpromisingofquantumtechnologiesoutofthelabandintocommercialapplications.OthercountriesinvestinginQCtechnologiesto

developquantumapplicationsincludetheUnitedKingdom’scallforquantumapplication

6Law,Marcus.2023.Howquantumcomputingcansolvesupplychainchallenges.SupplyChain,February16.

/pr_newswire/how-quantum-computing-can-solve-supply-chain-challenges.

7QuantumEconomicDevelopmentConsortium(QED-C).2022.PublicPrivatePartnershipsinQuantumComputing:ThePotentialforAcceleratingNear-TermQuantumApplications.Arlington,VA.

/ppp22/

.

8USCongress,House.2023.ABilltoreauthorizetheNationalQuantumInitiativeAct,andforotherpurposes(HR6213).Washington.

/118/bills/hr6213/BILLS-118hr6213ih.pdf

.

9USCongress,HouseCommitteeonScience,Space,andTechnology.2023.HR6213-TheNationalQuantumInitiativeReauthorizationAct:Passedbyfullcommittee,November29.Washington.

/2023/11/the-national-quantum-initiative-reauthorization-act.

10USCongress.2023.NationalDefenseAuthorizationActforFiscalYear2024.January3.Washington.

/118/bills/hr2670/BILLS-118hr2670enr.pdf.

10|Transportation&Logistics

feasibility,

11

Australia’se?ortstoutilizequantumcomputingfortransportationnetwork

optimization,

12

Japan’svisionofaquantumsociety,

13

andareportreleasedbytheCouncilofCanadianAcademiesthatidenti?edseveralindustries,includingtransportationandlogistics,thatcanbene?tfromquantumcomputing.

14

Inalignmentwiththepotentialforsigni?canteconomicimpactandimplicationsrelatedtoclimateandotherpolicies,itisimportanttoexplorekeyquestionspertainingtoquantumcomputinginthetransportationandlogisticsindustry:

●Whatareclassesofproblemsinlogisticsandtransportationthatmaybene?tfromquantumcomputing?Whatistherelevantscale?WhatistheanticipatedbusinessimpactofsuchQCsolution?Whatisthelikelihoodorfeasibilityofdeployingthis

solution?

●Whatisthestateofhigh-performancecomputingandQCinthelogisticsand

transportationsector?Forexample,isitcommonlyusedatscale,istheindustrywelleducatedonthetechnology,aretherestrongpartnerships?

●Whatconstraintsdologisticsandtransportationcompaniesfacewhenadopting

emergingtechnologies?Constraintsmightincludelowpro?tmargins,lagging

technology,highcomputingenergycosts,and/orlackofskills.WhichconstraintscanQCo?eringshelptoaddress?

Inseekingtoanswerthesequestions,expertsfromboththetransportationandlogistics

industryandthequantumcommunitiesconvenedataworkshoptoexplorethetypesof

quantumcomputingsystemsavailable,thealgorithmsandmethodstheyuse,theusecasesthattheyshowpromiseinaddressing,andthebusinessandgovernmentactionsthatcanbetakentoprogressthe?eldforward.

11GOV.UK.2023.FundingCompetition:FeasibilityStudiesinQuantumComputingApplications(February13–

March29).London

.uk/competition/1468/overview/3e95c2d9-

70ba-4a06-880f-c814422bb1f1.

12TransportforNewSouthWales.2021.QuantumTechnology.Sydney.

.au/system/?les/media/documents/2021/Transport%20for%20NSW%20and%20

Quantum%20Technology%20-%20WCAG%20version.PDF.

13SecretariatofScience,Technology,andInnovationPolicy.2022.VisionofQuantumFutureSociety.Tokyo.

https://www8.cao.go.jp/cstp/english//outline_vision.pdf.

14CouncilofCanadianAcademies.2023.QuantumPotential.Ottawa.

https://www.cca-

reports.ca/reports/quantum-technologies/.

Source:NationalInstituteofStandardsandTechnology

12|Transportation&Logistics

DecisionMakinginSupplyChainswithQuantumComputing

Amajorityofthe83usecasesidenti?ed(72%)centeredaroundusingquantumcomputingtohelpwithdecisionmaking.Physicalsupplychainsareverycomplexwithmanyvariables,andunderstandinghowtomakegoodoperationaldecisionsishard.Thecombinationsof

movementforthousandsoftrucks,trains,planes,andshipsaredi?cultorimpossibleto

modelusingclassicalcomputing.Thus,mostoftheworkshop’sdiscussionscenteredaroundeitherproblemsthatseektooptimizeallocationofresources(e.g.,trucks,people)orthe

needtosimulatemarketdemandandre?ectthatsimulationonsupply(e.g.,trains,planes,labor).Theparticipantsalsodiscussedtheuseofmachinelearningto?ndpatternsin

performanceinformationinordertomakegoodorbetterdecisions.

Onlyafewoftheusecasesidenti?ednotedtheuseofquantumcomputingforresearch,

suchastodevelopbetterbatteries/powersourcesforvehiclesortominimizepollution,butthetimelinesforachievingthosewerefartheroutbecauseofthehardwareadvances

neededinQCtechnology.

Optimization.Asnoted,themajority(46ofthe83usecases,55%)oftheusecasesdescribedoptimizationasthekeyneed.Therewereseveralvariationsofoptimizationnoted.Many

focusedonaroutingproblem—?ndingthemoste?cientwaysformultiplevehiclesto

travelthatreducestraveltimesandmaximizescustomerservice.Variationsofrouting

included?ndingbetterschedulingtoolsformanufacturingande?cientroutingofvehicles

tominimizetra?ccongestion.Otheroptimizationsfocusedone?cientloadingand

unloadinginacomplexenvironment,suchasschedulingtheloadingandcreationofrailcarsandloadinganairplanetomaximizetheloadcarried.QuestionswereraisedaboutwhetheroptimizationcouldalsoapplytogovernmentcomplianceburdenssuchasloweringCO2

emissionsorexpeditingPFASremediatione?orts.

Simulation.Thenextmostpopularapproach(22of83,26%)intheidenti?edusecaseswas

simulation.Examplestendedtocenteraroundsimulatingorforecastingdemandthatinturnwouldallowtransportationassetstobeoptimizedtomeetthesimulatedforecast.Oneuse

casecalledforthecreationofafulldigitaltwin,i.e.,avirtualrepresentationofafactory,truck,train,etc.createdtosimulatedemandandsupplyplanning.

MachineLearning.Asmallernumberofusecases(11of83,13%)notedhowMLcouldhelp

withpatternrecognition,especiallyformonitoringvehicleperformanceformaintenanceandsafety.

Forafewusecasesforwhichoptimizationwastheprimaryapproachidenti?ed,experts

notedthatsimulationandMLwouldlikelyalsoplayarole,forexample,withassigning?eetsandcrewsandmanagingon-timedeliveries.

13|Transportation&Logistics

UseCasesImpactandFeasibility

Weanalyzedthe83usecasesforquantumtechnologiesinlogisticsidenti?edbyexperts

andconsolidatedtheminto15examples(see

Figure2)

.Wefurtherrankedtheusecasesasthoseexpectedtohavethegreatestimpactandthosejudgedtobethemostfeasible.Theaverageimpactandfeasibilityscoresofeachusecasefromthisassessmentarepresentedinthegraphicsbelow.Thereisaclearlinearrelationship:Thefeasibilityandimpactofausecaseareoftensimilarlyranked,thoughthiscouldbecausedinpartbyanunconsciousbiaspeoplemaycarrythatthemorefeasibleusecasewillalsobethemoreimpactfulone.Still,weconcludefromthisassessmentthattherearekeyopportunitiesthatarerelatively

preparedtoleveragequantumtechnologyforlogisticalpurposes.

Theusecaserankedthemostfeasibleandimpactfuliscontinuousrouteoptimization,

makingitthebesttargetforresearch.Highimpactandhighfeasibilityimplylesstimeis

requiredtodevelopaworkingsolutionthanisrequiredforotherconcepts.Continuousrouteoptimizationisabroadconceptthatisrelevanttoalltransportationmodalities.Route

optimizationisanoldproblem,?rstdescribedbyLeonhardEulerinthe1700s,andresearchsinceWorldWarIIisextensive.

15

Therearealgorithmsforclassicalcomputerstosolve

routingproblems,butworkshopparticipantsnotedthattheproblemseithertaketoolongusingconventionalcomputingoraresimplytoobigforthecomputers,requiringenduserstoreducethenumberofvariablesorconstraintsinputtedintothemodel.

Theconceptratedthesecondmostfeasibleisoperatingplandesignandtrainscheduling.

Thisconceptreferstoaprocessofforecastingneedsfora?eet,includingthecrew,vehicles,andload,anddevelopingaplantomeettheneeds.Operatingplansarecomprehensive,

oftenconsideringfactorssuchastrainschedulingandrouting,traincarconstruction,cardistribution,and?eetmanagement.However,thisconceptwasratedonlythe?fthmostimpactful.Thisusecaseperfectlyillustratestheamountofcomplexitythatshouldbe

addressedinanoptimalsolution;routing,loading,personnelscheduling,maintenanceschedules,construction,weatherdisruptions,andmoreareallpossiblefactorstotrytoaccountfor.

15Euler,Leonhard.1741.Solutioproblematisadgeometriamsituspertinentis,CommentariiacademiaescientiarumPetropolitanae8:128–40.

14|Transportation&Logistics

Figure1:Impactandfeasibilityofthe15consolidatedusecases

Figure2:The15consolidatedusecases,categorizedbytopic,typeofproblem,andrelevantquantum

technology

15|Transportation&Logistics

Classi?cation

The83usecaseshavebeenclassi?edbyindustry,algorithmapproach(e.g.,optimization,ML,simulation),andareaofoperations(department).

Industry:Classi?cationbyindustryisgenerallyorganizedbymodeoftransportation(truck,train,plane,ocean),manufacturing,orpassengervehicleapplications.Justoverhalf(43of

83,51%)oftheusecasescouldbeappliedtoallindustries.Therestareidenti?edasspeci?ctoaportionofthesupplychain:16usecasesformanufacturing,10fortrucking,7for

passengervehiclesandcityapplications,4forretaillogistics,and3forrail.

Figure3:Numberofusecasesclassi?edineachindustry

Typeofproblem:Thedataareclassi?edbyproblemapproach.Theworkshopparticipants

wereaskedtouseoptimization,simulation,andmachinelearningastheirinitialchoices,andthisdefaultwassupportedbytheworkshop’sendresults:Thevastmajorityofusecasesareclassi?edprimarilyasanoptimizationproblem.

16|Transportation&Logistics

Figure4:Numberofusecasesclassi?edineachprimarytypeofproblem

Area/departmentthatbene?tsfromaquantumsolution:Thedataarealsocategorizedby

departmentorareaofoperations.Congruentwiththefocusonoptimization,mostproblemsareinsomewayrelatedtotheplanningfunctioninacompany;only6usecasesare

problemslikelytobeassignedtoanIT/datateamandanother6wouldbeascribedtoagroupworkingonsustainabilityissues.

Fig

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論