哈爾濱音樂學(xué)院《數(shù)據(jù)挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
哈爾濱音樂學(xué)院《數(shù)據(jù)挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
哈爾濱音樂學(xué)院《數(shù)據(jù)挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
哈爾濱音樂學(xué)院《數(shù)據(jù)挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
哈爾濱音樂學(xué)院《數(shù)據(jù)挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁哈爾濱音樂學(xué)院《數(shù)據(jù)挖掘基礎(chǔ)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在對(duì)一個(gè)社交媒體平臺(tái)的用戶興趣數(shù)據(jù)進(jìn)行分析,例如關(guān)注的話題、參與的討論組等,以進(jìn)行精準(zhǔn)的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶畫像和廣告定向中發(fā)揮重要作用?()A.分類算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是2、假設(shè)我們有一組關(guān)于學(xué)生成績(jī)的數(shù)據(jù),包括語文、數(shù)學(xué)、英語等科目成績(jī),要分析這些科目成績(jī)之間的相關(guān)性,以下哪種可視化方法較為直觀?()A.熱力圖B.雷達(dá)圖C.散點(diǎn)圖矩陣D.以上都不是3、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的結(jié)果解釋和評(píng)估是確保結(jié)果可靠性的重要環(huán)節(jié)。以下關(guān)于數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)結(jié)合具體的業(yè)務(wù)問題和背景進(jìn)行B.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估可以使用統(tǒng)計(jì)方法和可視化工具來輔助C.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)考慮結(jié)果的準(zhǔn)確性、可靠性和實(shí)用性等方面D.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估只需要由數(shù)據(jù)分析師進(jìn)行,不需要其他人員參與4、假設(shè)正在分析一個(gè)網(wǎng)站的用戶行為數(shù)據(jù),以優(yōu)化網(wǎng)站布局。以下關(guān)于用戶行為分析的描述,正確的是:()A.只關(guān)注用戶的點(diǎn)擊次數(shù),就能了解用戶的興趣和偏好B.頁面停留時(shí)間越短,說明用戶對(duì)該頁面越感興趣C.分析用戶的訪問路徑可以發(fā)現(xiàn)網(wǎng)站的熱門頁面和流程瓶頸D.用戶的注冊(cè)信息對(duì)分析用戶行為沒有幫助5、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的效果可以通過多種方式進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)預(yù)處理效果評(píng)估的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理效果可以通過比較預(yù)處理前后的數(shù)據(jù)質(zhì)量指標(biāo)來評(píng)估B.數(shù)據(jù)預(yù)處理效果可以通過對(duì)預(yù)處理后的數(shù)據(jù)進(jìn)行分析和建模來評(píng)估C.數(shù)據(jù)預(yù)處理效果評(píng)估應(yīng)考慮數(shù)據(jù)的特點(diǎn)和分析目的,選擇合適的評(píng)估方法D.數(shù)據(jù)預(yù)處理效果評(píng)估只需要關(guān)注數(shù)據(jù)的準(zhǔn)確性,其他方面可以忽略不計(jì)6、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是一種常用的統(tǒng)計(jì)方法。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認(rèn)為新教學(xué)方法有效C.假設(shè)檢驗(yàn)的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問題的實(shí)際情況無關(guān)D.可以通過控制樣本量和顯著性水平來平衡檢驗(yàn)的靈敏度和特異性7、在進(jìn)行數(shù)據(jù)分析時(shí),特征工程對(duì)于模型的性能有著重要影響。假設(shè)你正在處理一個(gè)預(yù)測(cè)房?jī)r(jià)的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項(xiàng)是最需要謹(jǐn)慎處理的?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來不重要的特征,以簡(jiǎn)化模型8、在數(shù)據(jù)分析中,特征工程用于從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要對(duì)文本數(shù)據(jù)進(jìn)行特征工程,以下關(guān)于特征工程的描述,哪一項(xiàng)是不正確的?()A.可以使用詞頻-逆文檔頻率(TF-IDF)來衡量單詞在文本中的重要性B.詞嵌入技術(shù),如Word2Vec,可以將單詞表示為低維向量C.特征工程只需要考慮數(shù)據(jù)的數(shù)值特征,對(duì)于文本等非數(shù)值特征不需要處理D.特征選擇可以去除冗余和無關(guān)的特征,提高模型的效率和性能9、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的自動(dòng)化是提高效率的重要手段。以下關(guān)于數(shù)據(jù)預(yù)處理自動(dòng)化的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理自動(dòng)化可以使用腳本和工具來實(shí)現(xiàn),減少手動(dòng)處理的工作量B.數(shù)據(jù)預(yù)處理自動(dòng)化可以提高數(shù)據(jù)的一致性和準(zhǔn)確性,減少人為錯(cuò)誤C.數(shù)據(jù)預(yù)處理自動(dòng)化需要根據(jù)具體的數(shù)據(jù)和問題進(jìn)行定制化開發(fā),不能通用D.數(shù)據(jù)預(yù)處理自動(dòng)化可以完全替代手動(dòng)處理,不需要人工干預(yù)10、假設(shè)要分析一個(gè)城市的交通流量數(shù)據(jù),以優(yōu)化交通信號(hào)燈的設(shè)置和道路規(guī)劃。數(shù)據(jù)包括不同時(shí)間段、不同路段的車流量、車速等信息。為了找到交通擁堵的規(guī)律和原因,以下哪個(gè)分析角度可能是關(guān)鍵的?()A.時(shí)空分析B.基于車型的分類分析C.只關(guān)注高峰時(shí)段的分析D.隨機(jī)抽樣分析11、數(shù)據(jù)分析中的模型部署是將訓(xùn)練好的模型應(yīng)用到實(shí)際生產(chǎn)環(huán)境中。假設(shè)要將一個(gè)預(yù)測(cè)模型部署為在線服務(wù),以下哪個(gè)方面可能是需要重點(diǎn)關(guān)注的?()A.模型的性能和響應(yīng)時(shí)間B.數(shù)據(jù)的安全性和隱私保護(hù)C.系統(tǒng)的可擴(kuò)展性和穩(wěn)定性D.以上方面都需要重點(diǎn)關(guān)注12、在進(jìn)行數(shù)據(jù)分析時(shí),異常值的檢測(cè)和處理是重要的環(huán)節(jié)。假設(shè)我們?cè)诜治鲆唤M生產(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù)。以下關(guān)于異常值的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.異常值可能是由于數(shù)據(jù)錄入錯(cuò)誤或特殊情況導(dǎo)致的B.可以通過箱線圖等方法直觀地檢測(cè)異常值C.對(duì)于異常值,應(yīng)該立即刪除,以免影響分析結(jié)果D.對(duì)異常值的處理需要根據(jù)具體情況進(jìn)行判斷,有時(shí)需要進(jìn)一步調(diào)查原因13、在數(shù)據(jù)可視化中,顏色的選擇和使用對(duì)于傳達(dá)信息有重要影響。假設(shè)要在一個(gè)圖表中突出顯示關(guān)鍵數(shù)據(jù),以下哪種顏色搭配策略可能是最有效的?()A.使用鮮艷的對(duì)比色B.使用相近的柔和色C.隨機(jī)選擇顏色D.只使用一種顏色14、數(shù)據(jù)預(yù)處理中的特征工程用于創(chuàng)建有意義的特征。假設(shè)要為一個(gè)機(jī)器學(xué)習(xí)模型準(zhǔn)備輸入特征,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始數(shù)據(jù)的所有特征,不進(jìn)行任何處理和轉(zhuǎn)換B.隨意創(chuàng)建新的特征,不考慮其合理性和有效性C.基于對(duì)數(shù)據(jù)的理解和業(yè)務(wù)知識(shí),進(jìn)行特征選擇、提取、構(gòu)建和變換,以提高模型的性能和可解釋性D.認(rèn)為特征工程對(duì)模型性能影響不大,不重視這一環(huán)節(jié)15、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析16、當(dāng)分析兩個(gè)連續(xù)變量之間的線性關(guān)系時(shí),以下哪個(gè)統(tǒng)計(jì)量的值在-1到1之間?()A.相關(guān)系數(shù)B.決定系數(shù)C.方差膨脹因子D.協(xié)方差17、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶進(jìn)行分類,以實(shí)現(xiàn)精準(zhǔn)營(yíng)銷?()A.決策樹算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法18、在數(shù)據(jù)分析中,抽樣是一種常用的方法。以下關(guān)于抽樣的描述,錯(cuò)誤的是:()A.簡(jiǎn)單隨機(jī)抽樣保證了每個(gè)樣本被抽取的概率相等B.分層抽樣可以保證樣本在不同層次上具有代表性C.整群抽樣的效率較高,但精度可能較低D.抽樣不會(huì)引入偏差,能完全反映總體的特征19、在數(shù)據(jù)分析項(xiàng)目中,與利益相關(guān)者的溝通和理解需求至關(guān)重要。假設(shè)你正在為一家企業(yè)進(jìn)行數(shù)據(jù)分析,以下關(guān)于需求溝通的方法,哪一項(xiàng)是最有效的?()A.使用大量的技術(shù)術(shù)語和復(fù)雜的圖表來解釋分析過程B.以通俗易懂的語言,結(jié)合實(shí)際案例說明分析的目標(biāo)和結(jié)果C.只與技術(shù)人員溝通,忽略非技術(shù)背景的利益相關(guān)者D.不與利益相關(guān)者溝通,自行決定分析的方向和重點(diǎn)20、在數(shù)據(jù)分析中,數(shù)據(jù)的可解釋性對(duì)于決策支持很重要。假設(shè)要向管理層解釋一個(gè)預(yù)測(cè)銷售趨勢(shì)的模型結(jié)果,以下關(guān)于數(shù)據(jù)可解釋性方法的描述,正確的是:()A.使用復(fù)雜的數(shù)學(xué)公式和技術(shù)術(shù)語,讓管理層難以理解B.不提供任何解釋,讓管理層自行判斷C.采用簡(jiǎn)單直觀的圖表、案例分析和通俗易懂的語言,解釋模型的輸入、輸出和決策依據(jù),幫助管理層做出明智的決策D.認(rèn)為數(shù)據(jù)可解釋性不重要,只要模型預(yù)測(cè)準(zhǔn)確就行21、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)的標(biāo)準(zhǔn)化或歸一化處理常常是必要的。假設(shè)我們有一組特征數(shù)據(jù),取值范圍差異較大,以下哪種標(biāo)準(zhǔn)化方法可以將數(shù)據(jù)映射到特定的區(qū)間,例如[0,1]?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是22、在數(shù)據(jù)分析中,建立合適的預(yù)測(cè)模型是常見的任務(wù)。假設(shè)你要預(yù)測(cè)下個(gè)月某產(chǎn)品的銷售量,有歷史銷售數(shù)據(jù)和相關(guān)的市場(chǎng)因素?cái)?shù)據(jù)。以下關(guān)于預(yù)測(cè)模型的選擇,哪一項(xiàng)是最需要考慮的因素?()A.模型的復(fù)雜程度,越復(fù)雜的模型通常預(yù)測(cè)效果越好B.數(shù)據(jù)的特點(diǎn)和規(guī)模,選擇適合數(shù)據(jù)的模型C.模型的訓(xùn)練時(shí)間,選擇訓(xùn)練速度快的模型D.模型在其他類似問題中的應(yīng)用效果,直接套用23、對(duì)于數(shù)據(jù)分析中的文本情感分析,假設(shè)要分析大量的產(chǎn)品評(píng)論,判斷其是正面、負(fù)面還是中性情感。以下哪種方法在處理自然語言的情感傾向時(shí)可能更有效?()A.使用情感詞典,匹配關(guān)鍵詞B.基于機(jī)器學(xué)習(xí)的分類模型C.深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)D.人工閱讀和判斷每條評(píng)論的情感24、假設(shè)要分析一個(gè)市場(chǎng)調(diào)研數(shù)據(jù)集,了解消費(fèi)者對(duì)不同品牌、產(chǎn)品特性和價(jià)格的偏好。在設(shè)計(jì)調(diào)查問卷和收集數(shù)據(jù)時(shí),以下哪個(gè)原則可能是最重要的,以確保數(shù)據(jù)的質(zhì)量和有效性?()A.問題的清晰性和簡(jiǎn)潔性B.盡量多設(shè)置問題以獲取更多信息C.引導(dǎo)消費(fèi)者給出特定答案D.不考慮消費(fèi)者的反饋25、在數(shù)據(jù)分析中,對(duì)于時(shí)間序列數(shù)據(jù),例如股票價(jià)格、氣溫變化等,需要進(jìn)行預(yù)測(cè)和趨勢(shì)分析。以下哪種方法可能在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)較好?()A.ARIMA模型B.決策樹C.樸素貝葉斯D.以上都不是26、在處理不平衡數(shù)據(jù)集時(shí),即某些類別樣本數(shù)量遠(yuǎn)少于其他類別,以下關(guān)于數(shù)據(jù)分析方法的調(diào)整,哪一項(xiàng)是最有效的?()A.直接使用常規(guī)的分類算法,不做特殊處理B.對(duì)少數(shù)類樣本進(jìn)行過采樣,增加其數(shù)量C.對(duì)多數(shù)類樣本進(jìn)行欠采樣,減少其數(shù)量D.以上三種方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)進(jìn)行優(yōu)化27、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持對(duì)總體的某種假設(shè)。假設(shè)我們想要檢驗(yàn)一種新的營(yíng)銷策略是否顯著提高了產(chǎn)品的銷售額,設(shè)定顯著性水平為0.05。如果計(jì)算得到的p值小于0.05,我們可以得出什么結(jié)論?()A.新的營(yíng)銷策略顯著提高了銷售額B.新的營(yíng)銷策略沒有顯著提高銷售額C.無法確定新策略對(duì)銷售額的影響D.以上結(jié)論都不正確28、數(shù)據(jù)分析中的分類算法用于將數(shù)據(jù)分為不同的類別。假設(shè)要構(gòu)建一個(gè)分類模型來預(yù)測(cè)客戶是否會(huì)流失,以下哪種算法可能對(duì)處理不平衡的數(shù)據(jù)集(流失客戶數(shù)量遠(yuǎn)少于未流失客戶)表現(xiàn)較好?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.隨機(jī)森林29、假設(shè)要對(duì)海量圖像數(shù)據(jù)進(jìn)行分析,以下關(guān)于圖像數(shù)據(jù)分析方法的描述,正確的是:()A.直接使用傳統(tǒng)的數(shù)據(jù)分析方法處理圖像數(shù)據(jù),效果良好B.基于深度學(xué)習(xí)的圖像識(shí)別算法能夠自動(dòng)提取圖像的特征C.圖像數(shù)據(jù)的分辨率對(duì)分析結(jié)果沒有影響D.不需要對(duì)圖像數(shù)據(jù)進(jìn)行預(yù)處理,直接輸入模型進(jìn)行分析30、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)對(duì)于描述數(shù)據(jù)特征非常重要。假設(shè)要分析一組學(xué)生的考試成績(jī)分布情況,包括成績(jī)的集中趨勢(shì)和離散程度。以下哪個(gè)統(tǒng)計(jì)指標(biāo)組合最能全面地描述數(shù)據(jù)的分布特征?()A.均值和標(biāo)準(zhǔn)差B.中位數(shù)和方差C.眾數(shù)和極差D.以上指標(biāo)都不夠全面二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)對(duì)于社交媒體的影響力評(píng)估,論述如何運(yùn)用數(shù)據(jù)分析衡量用戶的影響力和傳播效果,為品牌推廣和社交營(yíng)銷提供決策支持。2、(本題5分)在金融市場(chǎng)的量化交易中,如何運(yùn)用數(shù)據(jù)分析來制定交易策略、控制風(fēng)險(xiǎn)和提高盈利能力?請(qǐng)論述量化交易模型的構(gòu)建、數(shù)據(jù)的選擇和處理,以及市場(chǎng)變化對(duì)交易策略的影響。3、(本題5分)在金融衍生品交易中,如何運(yùn)用數(shù)據(jù)分析來評(píng)估風(fēng)險(xiǎn)敞口、定價(jià)模型的合理性和交易策略的優(yōu)化?請(qǐng)論述數(shù)據(jù)分析在復(fù)雜金融工具交易中的應(yīng)用、模型風(fēng)險(xiǎn)和市場(chǎng)波動(dòng)的應(yīng)對(duì)。4、(本題5分)在物流配送中心的選址問題中,如何利用數(shù)據(jù)分析綜合考慮交通、成本、需求等因素,選擇最優(yōu)的配送中心位置。5、(本題5分)制造業(yè)中的數(shù)據(jù)分析可以幫助企業(yè)提高生產(chǎn)效率、降低成本和改進(jìn)產(chǎn)品質(zhì)量。請(qǐng)深入探討如何運(yùn)用數(shù)據(jù)分析來實(shí)現(xiàn)生產(chǎn)過程的監(jiān)控和優(yōu)化,如設(shè)備故障預(yù)測(cè)、質(zhì)量控制和供應(yīng)鏈管理,舉例說明數(shù)據(jù)分析在智能制造中的應(yīng)用和取得的成效。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征縮放?請(qǐng)介紹特征縮放的方法和目的,并舉例說明其在模型訓(xùn)練中的作用。2、(本題5分)數(shù)據(jù)倉(cāng)庫(kù)在企業(yè)數(shù)據(jù)分析中起著重要作用,請(qǐng)說明數(shù)據(jù)倉(cāng)庫(kù)的概念、架構(gòu)和建設(shè)過程中的關(guān)鍵步驟。3、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)歸檔策略,說明如何確定需要?dú)w檔的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論