版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.反比例函數(shù)在第一象限的圖象如圖所示,則k的值可能是()A.3 B.5 C.6 D.82.已知一組數(shù)據(jù):2,5,2,8,3,2,6,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.中位數(shù)是3,眾數(shù)是2 B.中位數(shù)是2,眾數(shù)是3C.中位數(shù)是4,眾數(shù)是2 D.中位數(shù)是3,眾數(shù)是43.點A(1,y1)、B(3,y2)是反比例函數(shù)y=圖象上的兩點,則y1、y2的大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能確定4.劉徽是我國古代一位偉大的數(shù)學家,他的杰作《九章算術(shù)注》和《海寶算經(jīng)》是中國寶貴的文化遺產(chǎn).他所提出的割圓術(shù)可以估算圓周率.割圓術(shù)是依次用圓內(nèi)接正六邊形、正十二邊形…去逼近圓.如圖,的半徑為1,則的內(nèi)接正十二邊形面積為()A.1 B.3 C.3.1 D.3.145.如圖,△ABC中,D是AB的中點,DE∥BC,連接BE.若AE=6,DE=5,∠BEC=90°,則△BCE的周長是()A.12 B.24 C.36 D.486.圓的直徑是13cm,如果圓心與直線上某一點的距離是6.5cm,那么該直線和圓的位置關(guān)系是()A.相離 B.相切 C.相交 D.相交或相切7.若二次函數(shù)的圖象與軸僅有一個公共點,則常數(shù)的為()A.1 B.±1 C.-1 D.8.一張圓心角為的扇形紙板和圓形紙板按如圖方式剪得一個正方形,邊長都為4,已知,則扇形紙板和圓形紙板的半徑之比是()A. B. C. D.9.已知點C為線段AB延長線上的一點,以A為圓心,AC長為半徑作⊙A,則點B與⊙A的位置關(guān)系為()A.點B在⊙A上 B.點B在⊙A外 C.點B在⊙A內(nèi) D.不能確定10.如圖,AB是⊙O的直徑,OC是⊙O的半徑,點D是半圓AB上一動點(不與A、B重合),連結(jié)DC交直徑AB與點E,若∠AOC=60°,則∠AED的范圍為()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°11.如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm則BE+CG的長等于()A.13 B.12 C.11 D.1012.在下列函數(shù)圖象上任取不同兩點,,一定能使成立的是()A. B.C. D.二、填空題(每題4分,共24分)13.把二次函數(shù)變形為的形式為_________.14.如圖,已知點是函數(shù)圖象上的一個動點.若,則的取值范圍是__________.15.設(shè),是關(guān)于的一元二次方程的兩根,則______.16.如圖,在四邊形中,,,,點為邊上一點,連接.,與交于點,且,若,,則的長為_______________.17.拋物線y=(m2-2)x2-4mx+n的對稱軸是x=2,且它的最高點在直線y=x+2上,則m=________,n=________.18.如圖,在?ABCD中,點E是邊AD的中點,EC交對角線BD于點F,則EF:FC等于_____.三、解答題(共78分)19.(8分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C,(1)求證:PB是⊙O的切線;(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2,求BC的長.20.(8分)如圖,一枚運載火箭從地面處發(fā)射,當火箭到達點時,從位于地面處的雷達站測得的距離是6,仰角為;1后火箭到達點,此時測得仰角為(所有結(jié)果取小數(shù)點后兩位).(1)求地面雷達站到發(fā)射處的水平距離;(2)求這枚火箭從到的平均速度是多少?(參考數(shù)據(jù):,,,,,)21.(8分)某商店進行促銷活動,如果將進價為8元/件的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售價,減少進貨量的辦法增加利潤,已知這種商品的單價每漲1元,其銷售量就要減少10件,問將售價定為多少元/件時,才能使每天所賺的利潤最大.并求出最大利潤.22.(10分)已知關(guān)于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有實數(shù)根,求m的取值范圍.(2)若方程的兩實數(shù)根為x1、x2,且x12+x22=5,求m的值.23.(10分)把下列多項式分解因式:(1).(2).24.(10分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側(cè)),與y軸交于點C.已知△ABC的面積為1.(1)求這條拋物線相應(yīng)的函數(shù)表達式;(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內(nèi),A、N是位于直線BM同側(cè)的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.25.(12分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標系中的位置如圖所示.(1)將△ABC向上平移3個單位后,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點A1的坐標.(2)將△ABC繞點O順時針旋轉(zhuǎn)90°,請畫出旋轉(zhuǎn)后的△A2B2C2,并求點B所經(jīng)過的路徑長(結(jié)果保留π)26.有5張不透明的卡片,除正面上的圖案不同外,其他均相同.將這5張卡片背面向上洗勻后放在桌面上.(1)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為_____.(2)若從中隨機抽取1張卡片后不放回,再隨機抽取1張,請用畫樹狀圖或列表的方法,求兩次所抽取的卡片恰好都是軸對稱圖形的概率.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)點(1,3)在反比例函數(shù)圖象下方,點(3,2)在反比例函數(shù)圖象上方可得出k的取值范圍,即可得答案.【詳解】∵點(1,3)在反比例函數(shù)圖象下方,∴k>3,∵點(3,2)在反比例函數(shù)圖象上方,∴<2,即k<6,∴3<k<6,故選:B.本題考查了反比例函數(shù)的圖象的性質(zhì),熟記k=xy是解題關(guān)鍵.2、A【分析】先將這組數(shù)據(jù)從小到大排列,找出最中間的數(shù),就是中位數(shù),出現(xiàn)次數(shù)最多的數(shù)就是眾數(shù).【詳解】解:將這組數(shù)據(jù)從小到大排列為:2,2,2,3,5,6,8,最中間的數(shù)是3,則這組數(shù)據(jù)的中位數(shù)是3;2出現(xiàn)了三次,出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)是2;故選:A.此題考查了眾數(shù)、中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).3、A【解析】∵反比例函數(shù)y=中的9>0,∴經(jīng)過第一、三象限,且在每一象限內(nèi)y隨x的增大而減小,又∵A(1,y?)、B(3,y?)都位于第一象限,且1<3,∴y?>y?,故選A.4、B【分析】根據(jù)直角三角形的30度角的性質(zhì)以及三角形的面積公式計算即可解決問題.【詳解】解:如圖,作AC⊥OB于點C.∵⊙O的半徑為1,∴圓的內(nèi)接正十二邊形的中心角為360°÷12=30°,∴過A作AC⊥OB,∴AC=OA=,∴圓的內(nèi)接正十二邊形的面積S=12××1×=3.故選B.此題主要考查了正多邊形和圓,三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.5、B【解析】試題解析:△ABC中,D是AB的中點,DE∥BC,是的中點,∠BEC=90°,△BCE的周長故選B.點睛:三角形的中位線平行于第三邊而且等于第三邊的一半.6、D【分析】比較圓心到直線距離與圓半徑的大小關(guān)系,進行判斷即可.【詳解】圓的直徑是13cm,故半徑為6.5cm.圓心與直線上某一點的距離是6.5cm,那么圓心到直線的距離可能等于6.5cm也可能小于6.5cm,因此直線與圓相切或相交.故選D.本題主要考查直線與圓的位置關(guān)系,需注意圓的半徑為6.5cm,那么圓心與直線上某一點的距離是6.5cm是指圓心到直線的距離可能等于6.5cm也可能小于6.5cm.7、C【分析】函數(shù)為二次函數(shù)與x軸僅有一個公共點,所以根據(jù)△=0即可求出k的值.【詳解】解:當時,二次函數(shù)y=kx2+2x-1的圖象與x軸僅有一個公共點,
解得k=-1.故選:C.本題考查二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.8、A【分析】分別求出扇形和圓的半徑,即可求出比值.【詳解】如圖,連接OD,∵四邊形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵=,∴OB=AB=3,∴CO=7由勾股定理得:OD==r1;如圖2,連接MB、MC,∵四邊形ABCD是⊙M的內(nèi)接四邊形,四邊形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=4,∴MC=MB==r2∴扇形和圓形紙板的半徑比是:=故選:A.本題考查了正方形性質(zhì)、圓內(nèi)接四邊形性質(zhì);解此題的關(guān)鍵是求出扇形和圓的半徑,題目比較好,難度適中.9、C【分析】根據(jù)題意確定AC>AB,從而確定點與圓的位置關(guān)系即可.【詳解】解:∵點C為線段AB延長線上的一點,∴AC>AB,∴以A為圓心,AC長為半徑作⊙A,則點B與⊙A的位置關(guān)系為點B在⊙A內(nèi),故選:C.本題考查的知識點是點與圓的位置關(guān)系,根據(jù)題意確定出AC>AB是解此題的關(guān)鍵.10、D【分析】連接BD,根據(jù)圓周角定理得出∠ADC=30°,∠ADB=90°,再根據(jù)三角形的外角性質(zhì)可得到結(jié)論.【詳解】如圖,連接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故選D本題考查了圓周角定理和三角形的外角性質(zhì).正確應(yīng)用圓周角定理找出∠ADC=30°,∠ADB=90°是解題的關(guān)鍵.11、D【解析】根據(jù)切線長定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故選D.【點睛】本題主要考查了切線長定理,涉及到平行線的性質(zhì)、勾股定理等,求得BC的長是解題的關(guān)鍵.12、B【分析】根據(jù)各函數(shù)的增減性依次進行判斷即可.【詳解】A.∵k=3>0
∴y隨x的增大而增大,即當x?﹥
x?時,必有y?﹥
y?.∴當x≤0時,﹥0
故A選項不符合;
B.
∵拋物線開口向下,對稱軸為直線x=1
,∴當x≥1時y隨x的增大而減小,即當x?﹥
x?時,必有y?﹤
y?∴當x≥1時,<0故B選項符合;
C.當x>0時,y隨x的增大而增大,即當x?﹥
x?時,必有y?﹥
y?.
此時﹥0
故C選項不符合;
D.
∵拋物線的開口向上,對稱軸為直線x=2,
當0﹤x﹤2時y隨x的增大而減小,此時當x?﹥
x?時,必有y?﹤
y?,∴當0﹤x﹤2時,<0當x≥2時,y隨x的增大而增大,即當x?﹥
x?時,必有y?﹥
y?,
此時﹥0
所以當x﹥0時D選項不符合.
故選:
B本題考查的是一次函數(shù)、反比例函數(shù)、二次函數(shù)的增減性,增減區(qū)間的劃分是正確解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】利用配方法變形即可.【詳解】解:故答案為:本題考查了二次函數(shù)的的解析式,熟練掌握配方法是解題的關(guān)鍵.14、【分析】根據(jù)得-1<a<1,再根據(jù)二次函數(shù)的解析式求出對稱軸,再根據(jù)函數(shù)的圖像與性質(zhì)即可求解.【詳解】∵∴-1<a<1,∵函數(shù)對稱軸x=∴當a=,y有最大值當a=-1時,∴則的取值范圍是故填:.此題主要考查二次函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是根據(jù)題意函數(shù)圖像進行求解.15、-5.【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系即可求解.【詳解】∵,是關(guān)于的一元二次方程的兩根,∴,∴,故答案為:.本題考查了一元二次方程根與系數(shù)的關(guān)系,如果,是方程的兩根,那么,.16、【解析】由,知點A,C都在BD的垂直平分線上,因此,可連接交于點,易證是等邊三角形,是等邊三角形,根據(jù)等邊三角形的性質(zhì)對三角形中的線段進行等量轉(zhuǎn)換即可求出OB,OC的長度,應(yīng)用勾股定理可求解.【詳解】解:如圖,連接交于點∵,,,∴垂直平分,是等邊三角形∴,,∵∴,∴∴∴∵∴是等邊三角形∴∴,∴∴本題主要考查了等邊三角形的判定與性質(zhì)、勾股定理,綜合運用等邊三角形的判定與性質(zhì)進行線段間等量關(guān)系的轉(zhuǎn)換是解題的關(guān)鍵.17、-1-1【分析】由對稱軸可求得m的值,且可求得頂點坐標,再把頂點坐標代入直線解析式可求得n.【詳解】∵拋物線y=(m2?2)x2?4mx+n的對稱軸是x=2,
∴?=2,解得m=2或m=?1,
∵拋物線有最高點,
∴m2?2<0,
∴m=?1,
∴拋物線解析式為y=?x2+4x+n=?(x?2)2+4+n,
∴頂點坐標為(2,4+n),
∵最高點在直線y=x+2上,
∴4+n=1+2,解得n=?1,
故答案為?1,?1.本題考查二次函數(shù)的性質(zhì)、一次函數(shù)圖象上點的坐標特征和二次函數(shù)的最值,解題的關(guān)鍵是掌握二次函數(shù)的性質(zhì)、一次函數(shù)圖象上點的坐標特征.18、2:2【解析】試題分析:此題主要考查了平行四邊形的性質(zhì)以及相似三角形的判定與性質(zhì)等知識,得出△DEF∽△BCF是解題關(guān)鍵.根據(jù)題意得出△DEF∽△BCF,進而得出DE:BC=EF:FC,利用點E是邊AD的中點得出答案即可.解:∵?ABCD,故AD∥BC,∴△DEF∽△BCF,∴DE:BC=EF:FC,∵點E是邊AD的中點,∴AE=DE=AD,∴EF:FC=2:2.故選B.考點:2.平行四邊形的性質(zhì);2.相似三角形的判定與性質(zhì).三、解答題(共78分)19、(1)證明見解析;(1)BC=1.【解析】試題分析:(1)連接OB,由圓周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,證出∠PBA+∠OBA=90°,即可得出結(jié)論;(1)證明△ABC∽△PBO,得出對應(yīng)邊成比例,即可求出BC的長.試題解析:(1)證明:連接OB,如圖所示:∵AC是⊙O的直徑,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切線;(1)解:∵⊙O的半徑為1,∴OB=1,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.考點:切線的判定20、(1)雷達站到發(fā)射處的水平距離為4.38;(2)這枚火箭從到的平均速度為0.39.【分析】(1)根據(jù)余弦三角函數(shù)的定義,即可求解;(2)先求出AL的值,再求出BL的值,進而即可求解.【詳解】(1)在中,,答:雷達站到發(fā)射處的水平距離為4.38;(2)在中,,在中,,∴,∴速度為0.39,答:這枚火箭從到的平均速度為0.39.本題主要考查解直角三角形的實際應(yīng)用,掌握三角函數(shù)的定義,是解題的關(guān)鍵.21、他將售出價(x)定為14元時,才能使每天所賺的利潤(y)最大,最大利潤是360元.【分析】日利潤=銷售量×每件利潤.每件利潤為(x-8)元,銷售量為100-10(x-10),據(jù)此得關(guān)系式.【詳解】解:由題意得,y=(x-8)[100-10(x-10)]=-10(x-14)2+360(10≤a<20),∵a=-10<0∴當x=14時,y有最大值360答:他將售出價(x)定為14元時,才能使每天所賺的利潤(y)最大,最大利潤是360元.本題考查二次函數(shù)的應(yīng)用.22、(1)m≥;(2)m=3【分析】(1)根據(jù)判別式即可求出答案;(2)根據(jù)根與系數(shù)的關(guān)系即可求出答案.【詳解】解:(1)當m﹣2≠0時,△=1+8(m﹣2)≥0,∴m≥且m≠2,當m﹣2=0時,x﹣2=0,符合題意,綜上所述,m≥(2)由根與系數(shù)的關(guān)系可知:x1+x2=,x1x2=,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴+=5,∴=1或=﹣5,∴m=3或m=(舍去).本題考查一元二次方程,解題的關(guān)鍵是熟練運用一元二次方程的解法,本題屬于基礎(chǔ)題型.23、(1);(2)【分析】(1)原式整理后利用完全平方公式分解即可;(2)原式提取公因式即可得到結(jié)果.【詳解】(1);(2).本題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用乘法公式是解題關(guān)鍵.24、(1)y=x2+2x﹣3;(2)存在,點P坐標為或;(3)點N的坐標為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標,從而表示△ABC的面積,求出a的值繼而即可得二次函數(shù)解析式;(2)如圖①,當點P在x軸上方拋物線上時,平移BC所在的直線過點O交x軸上方拋物線于點P,則有BC∥OP,此時∠POB=∠CBO,聯(lián)立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當點P在x軸下方時,取BC的中點D,易知D點坐標為(,),連接OD并延長交x軸下方的拋物線于點P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯(lián)立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點A、點N到直線BM的距離相等,即AN∥BM,通過角的轉(zhuǎn)化得到AM=BN,設(shè)點N的坐標,表示出BN的距離可求出點N.【詳解】(1)當y=0時,x2﹣(a+1)x+a=0,解得x1=1,x2=a,當x=0,y=a∴點C坐標為(0,a),∵C(0,a)在x軸下方∴a<0∵點A位于點B的左側(cè),∴點A坐標為(a,0),點B坐標為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因為a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設(shè)直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當點P在x軸上方時,直線OP的函數(shù)表達式為y=3x,則,∴,,∴點P坐標為;②當點P在x軸下方時,直線OP的函數(shù)表達式為y=﹣3x,則∴,,∴點P坐標為,綜上可得,點P坐標為或;(3)如圖,過點A作AE⊥BM于點E,過點N作NF⊥BM于點F,設(shè)AM與BN交于點G,延長MN與x軸交于點H;∵AB=4,點M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 靜脈治療知識考試題及解析
- 房地產(chǎn)經(jīng)紀人培訓(xùn)題及答案參考
- 網(wǎng)絡(luò)安全行業(yè)解決方案顧問面試題
- 建筑設(shè)計師招聘面試題集及答案詳解
- 2025年智能化社區(qū)服務(wù)中心建設(shè)項目可行性研究報告
- 2025年城市社區(qū)綜合服務(wù)平臺建設(shè)項目可行性研究報告
- 2025年在線新零售平臺項目可行性研究報告
- 2025年低碳生活示范社區(qū)建設(shè)項目可行性研究報告
- 2025年東南沿海海洋牧場項目可行性研究報告
- 2026年資陽口腔職業(yè)學院單招職業(yè)傾向性考試題庫含答案詳解
- (2026)黃金尾礦處理綜合利用建設(shè)項目可行性研究報告(一)
- 全域土地綜合整治項目社會穩(wěn)定風險評估報告
- 2024-2025學年廣東省深圳市福田區(qū)七年級(上)期末英語試卷
- 《證券投資學》吳曉求課后習題答案
- 消防員心理測試題目及答案大全2025
- 住院醫(yī)師規(guī)范化培訓(xùn)急診科模擬試題及答案
- 2025國考國資委申論高分筆記
- 2025年高級經(jīng)濟師《人力資源》考試真題及答案
- 礦山項目經(jīng)理崗位職責與考核標準
- 2025年鄉(xiāng)村旅游民宿業(yè)發(fā)展現(xiàn)狀與前景可行性研究報告
- 國家安全生產(chǎn)公眾號
評論
0/150
提交評論